药学学报, 2021, 56(9): 2553-2560
引用本文:
李红梅, 郑伟娟, 李家璜, 华子春. 抗菌肽urumin与甲型流感病毒H1N1 HA蛋白的相互作用研究[J]. 药学学报, 2021, 56(9): 2553-2560.
LI Hong-mei, ZHENG Wei-juan, LI Jia-huang, HUA Zi-chun. Interaction study of the antibacterial peptide urumin with the H1N1 HA protein of influenza A virus[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2553-2560.

抗菌肽urumin与甲型流感病毒H1N1 HA蛋白的相互作用研究
李红梅1, 郑伟娟1, 李家璜1,2,3*, 华子春1,2,3*
1. 南京大学生命科学学院, 医药生物技术国家重点实验室, 江苏 南京 210023;
2. 中国药科大学生物药物学院, 江苏 南京 211198;
3. 常州南京大学高新技术研究院和江苏靶标生物医药研究所, 江苏 常州 213164
摘要:
甲型H1N1流感严重影响人类的健康和破坏全球经济发展,抗菌肽urumin可特异性结合H1N1病毒血凝素(hemagglutinin,HA)蛋白的保守茎部,但其结合位点和作用机制尚不明确。本研究通过分子对接和ELISA (enzyme-linked immunosorbent assay)实验研究urumin与HA蛋白作用可能的结合位点、关键氨基酸,提示HA残基His32(HA1)、Asp19(HA2)和Trp21(HA2)是HA与urumin作用的关键残基。Urumin的Arg4、Asn9和Cys16与HA蛋白残基Asp19(HA2)、Trp21(HA2)、His32(HA1)和Asn53(HA2)形成氢键相互作用,Trp12与HA的His32(HA1)形成芳香π堆积作用,维持urumin与HA蛋白的结合。在293T细胞中表达野生型HA及其丙氨酸突变体[丙氨酸替换His32(HA1)、Asp19(HA2)和Trp21(HA2)],ELISA实验结果显示,urumin与野生型HA的亲和力显著高于HA丙氨酸突变体,提示His32(HA1)、Asp19(HA2)和Trp21(HA2)可能是HA与urumin作用的关键残基。本研究为urumin的进一步改造和应用提供了理论和实验基础。
关键词:    urumin多肽      H1N1病毒      血凝素      分子对接模拟      结合位点     
Interaction study of the antibacterial peptide urumin with the H1N1 HA protein of influenza A virus
LI Hong-mei1, ZHENG Wei-juan1, LI Jia-huang1,2,3*, HUA Zi-chun1,2,3*
1. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China;
2. College of Biopharmaceuticals, China Pharmaceutical University, Nanjing 211198, China;
3. High-tech Research Institute of Nanjing University at Changzhou and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, China
Abstract:
Influenza A virus (H1N1) seriously affects the health of human and disrupts the development of global economic. The antimicrobial peptide urumin specifically binds to the conserved stem of the hemagglutinin (HA) protein of H1N1 virus, but its binding site and the mechanism of action are not clear. In this study, we investigated the possible binding sites and key amino acids for the interaction of urumin with HA protein by molecular docking and enzyme-linked immunosorbent assay (ELISA) experiments, suggesting that HA residues His32 (HA1), Asp19 (HA2), and Trp21 (HA2) are the key residues for the interaction of HA with urumin. Urumin's Arg4, Asn9, and Cys16 were associated with HA protein residues Asp19 (HA2), Trp21 (HA2), His32 (HA1), and Asn53 (HA2) form hydrogen bonding interactions, and Trp12 forms an aromatic π-stacking interaction with His32 (HA1) of HA, these interactions maintain the binding of urumin to HA protein. Wild-type HA and its alanine mutant[alanine substitutions His32 (HA1), Asp19 (HA2), and Trp21 (HA2)] were expressed in 293T cells. ELISA experiments showed that the affinity ability of urumin with HA wild-type was significantly higher than that of HA alanine mutant, suggesting that His32 (HA1), Asp19 (HA2), and Trp21 (HA2) may be the key residues for HA to interact with urumin. This study provides a theoretical and experimental basis for further modification and application of urumin.
Key words:    urumin peptide    H1N1 virus    hemagglutinin    molecular docking simulation    binding site   
收稿日期: 2021-04-06
DOI: 10.16438/j.0513-4870.2021-0483
基金项目: 国家自然科学基金资助项目(81630092);江苏省前沿引领技术基础研究专项(BK20192005).
通讯作者: 李家璜,Tel:86-25-86185986,E-mail:lijh8075@sina.com;华子春,Tel:86-25-83324605,E-mail:zchua@nju.edu.cn
Email: lijh8075@sina.com;zchua@nju.edu.cn
相关功能
PDF(803KB) Free
打印本文
0
作者相关文章
李红梅  在本刊中的所有文章
郑伟娟  在本刊中的所有文章
李家璜  在本刊中的所有文章
华子春  在本刊中的所有文章

参考文献:
[1] Prachanronarong KL, Canale AS, Liu P, et al. Mutations in influenza A virus neuraminidase and hemagglutinin confer resistance against a broadly neutralizing hemagglutinin stem antibody[J]. J Virol, 2019, 93:e01639-18.
[2] William WT. Influenza-associated hospitalizations in the United States[J]. JAMA, 2004, 292:1333-1340.
[3] Szewczyk B, Bieńkowska-Szewczyk K, Król E. Introduction to molecular biology of influenza a viruses[J]. Acta Biochim Pol, 2014, 61:397-401.
[4] Shi Y, Wu Y, Zhang W, et al. Enabling the ‘host jump’:structural determinants of receptor-binding specificity in influenza A viruses[J]. Nat Rev Microbiol, 2014, 12:822-831.
[5] Harrison S. Viral membrane fusion[J]. Nat Struct Mol Biol, 2008, 15:690-698.
[6] Gamblin SJ, Haire LF, Russell RJ, et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin[J]. Science, 2004, 303:1838-1842.
[7] Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution[J]. Nature, 1981, 289:366-373.
[8] Tan HX, Jegaskanda S, Juno JA, et al. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem[J]. J Clin Invest, 2019, 129:850-862.
[9] Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus[J]. Annu Rev Biochem, 1987, 56:365-394.
[10] Krammer F, Palese P. Advances in the development of influenza virus vaccines[J]. Nat Rev Drug Discov, 2015, 14:167-182.
[11] McKimm-Breschkin JL. Management of influenza virus infections with neuraminidase inhibitors:detection, incidence, and implications of drug resistance[J]. Treat Respir Med, 2005, 4:107-116.
[12] Lee PS, Wilson IA. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies[J]. Curr Top Microbiol Immunol, 2015, 386:323-341.
[13] Lee AC, Harris JL, Khanna KK, et al. A comprehensive review on current advances in peptide drug development and design[J]. Int J Mol Sci, 2019, 20:2383.
[14] Pachón-Ibáñez ME, Smani Y, Pachón J, et al. Perspectives for clinical use of engineered human host defense antimicrobial peptides[J]. FEMS Microbiol Rev, 2017, 41:323-342.
[15] Shartouny JR, Jacob J. Mining the tree of life:host defense peptides as antiviral therapeutics[J]. Semin Cell Dev Biol, 2019, 88:147-155.
[16] Holthausen DJ, Lee SH, Kumar VT, et al. An amphibian host defense peptide is virucidal for human H1 hemagglutinin-bearing influenza viruses[J]. Immunity, 2017, 46:587-595.
[17] Ekiert DC, Bhabha G, Elsliger MA, et al. Antibody recognition of a highly conserved influenza virus epitope[J]. Science, 2009, 324:246-251.
[18] Fleishman SJ, Whitehead TA, Ekiert DC, et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin[J]. Science, 2011, 332:816-821.
[19] Kadam RU, Juraszek J, Brandenburg B, et al. Potent peptidic fusion inhibitors of influenza virus[J]. Science, 2017, 358:496-502.
[20] Ma QG, Pan ZM, You M, et al. Prokaryotic expression on hemagglutinin gene of influenza A virus subtype H1N1 and analysis of its immunoreactivity[J]. Chin J Zoonoses (中国人兽共患病学报), 2010, 10:923-925.
[21] Zhang H, Niu HT, Li GR, et al. The influence of molecular structure on antimicrobial peptides' activity[J]. Chin J Antibiot (中国抗生素杂志), 2010, 35:892-897.
[22] Ghanem A, Mayer D, Chase G, et al. Peptide-mediated interference with influenza A virus polymerase[J]. J Virol, 2007, 81:7801-7804.
[23] Tripathi S, Tecle T, Verma A, et al. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins[J]. J Gen Virol, 2013, 94:40-49.
[24] Jones JC, Turpin EA, Bultmann H, et al. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells[J]. J Virol, 2006, 80:11960-11967.
[25] Sriwilaijaroen N, Suzuki Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2012, 88:226-249.
[26] Kampmann T, Mueller DS, Mark AE, et al. The role of histidine residues in low-pH-mediated viral membrane fusion[J]. Structure, 2006, 14:1481-1487.
[27] Peng JJ, Wang J, Dai WH, et al. Lead compound optimization strategy (7)-modification strategies for peptides[J]. Acta Pharm Sin (药学学报), 2020, 55:427-445.