药学学报, 2021, 56(9): 2584-2591
引用本文:
董博然, 赵志礼, 倪梁红, 嘎务, 刘铜华. 基于叶绿体基因组的长梗秦艽、全萼秦艽物种DNA分子标记与鉴定[J]. 药学学报, 2021, 56(9): 2584-2591.
DONG Bo-ran, ZHAO Zhi-li, NI Liang-hong, GAAWE Dorje, LIU Tong-hua. Molecular markers based upon whole chloroplast genomes and identifying alpine Gentiana waltonii and G. lhassica (Gentianaceae)[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2584-2591.

基于叶绿体基因组的长梗秦艽、全萼秦艽物种DNA分子标记与鉴定
董博然1, 赵志礼1*, 倪梁红1, 嘎务2, 刘铜华2,3
1. 上海中医药大学, 上海 201203;
2. 西藏藏医药大学, 西藏 拉萨 850000;
3. 北京中医药大学, 北京 100029
摘要:
藏药“解吉”为多来源品种之一,基原涉及龙胆科龙胆属(Gentiana)秦艽组(Sect.Cruciata)长梗秦艽Gentiana waltonii Burk.及全萼秦艽Gentiana lhassica Burk.等多种植物。在课题组前期民族植物学考察及品种整理基础上,本文首次分别测定两种基原植物的叶绿体全基因组序列,进而基于我国青藏高原产秦艽组10个物种的叶绿体全基因组数据筛选物种鉴定DNA分子标记,结果如下:①长梗秦艽叶绿体全基因组长度为148 705 bp,大单拷贝区(LSC)、小单拷贝区(SSC)分别为81 068 bp和17 029 bp,反向重复区(IR)为25 304 bp;②全萼秦艽全基因组长度为148 652 bp,大单拷贝区(LSC)、小单拷贝区(SSC)分别为80 997 bp和17 051 bp,反向重复区(IR)为25 302 bp;③分别注释叶绿体基因112个,其中78个编码蛋白基因(CDS:coding sequence)、30个tRNA基因、4个rRNA基因以及2个假基因(pseudogene:ψrps16,ψinfA);④构建的特异性引物PCR两步鉴定法可在秦艽组内将长梗秦艽、全萼秦艽有效鉴别。本工作可为长梗秦艽及全萼秦艽物种DNA分子鉴定、藏药“解吉”品质评价、高山濒危物种种质资源保护及龙胆科龙胆属系统发育分析等工作提供基础科学资料。
关键词:    藏药      长梗秦艽      全萼秦艽      叶绿体基因组      分子标记      PCR鉴定法     
Molecular markers based upon whole chloroplast genomes and identifying alpine Gentiana waltonii and G. lhassica (Gentianaceae)
DONG Bo-ran1, ZHAO Zhi-li1*, NI Liang-hong1, GAAWE Dorje2, LIU Tong-hua2,3
1. Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. Tibetan Traditional Medical College, Lhasa 850000, China;
3. Beijing University of Chinese Medicine, Beijing 100029, China
Abstract:
As two original plants of Tibetan herb Jieji, Gentiana waltonii Burk. and Gentiana lhassica Burk. belong to Section Cruciata of Gentiana, Gentianaceae. Here, we report on whole chloroplast genome sequences in the alpine species, respectively, and the features of plastomes were investigated. The plastome of G. waltonii is 148 705 bp long (148 652 bp in G. lhassica) and encodes 112 genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Two pseudogenes, namely ψrps16 and ψinfA, were found in plastomes. In addition, two novel loci were detected, and a species-specific polymerase chain reaction assay was developed for differentiating G. waltonii and G. lhassica from 10 alpine species in Section Cruciata. Gentiana. Our study provides basic data for identifying Tibetan herbs, alpine species conservation and molecular phylogenetic studies of Gentiana and Gentianaceae.
Key words:    Tibetan herb    Gentiana waltonii    Gentiana lhassica    plastome    molecular loci    species-specific PCR assay   
收稿日期: 2021-04-12
DOI: 10.16438/j.0513-4870.2021-0527
基金项目: 国家自然科学基金面上项目(82073959);国家自然科学基金面上项目(81173654);藏医药区域协同创新中心项目(2018XTCX005).
通讯作者: 赵志礼,Tel:86-21-51322202,E-mail:zhilzhao@sohu.com
Email: zhilzhao@sohu.com
相关功能
PDF(715KB) Free
打印本文
0
作者相关文章
董博然  在本刊中的所有文章
赵志礼  在本刊中的所有文章
倪梁红  在本刊中的所有文章
嘎务  在本刊中的所有文章
刘铜华  在本刊中的所有文章

参考文献:
[1] Yutok Yonten Gonpo. The Four Medical Tantras (四部医典)[M]. Shanghai:Shanghai Science & Technology Press, 1987:42.
[2] Dimaer Danzeng Pengcuo. Jing Zhu Ben Cao (晶珠本草)[M]. Shanghai:Shanghai Science & Technology Press, 1986:119.
[3] Northwest Institute of Plateau Biology, Chinese Academy of Sciences. Tibetan Medicine (藏药志)[M]. Xining:Qinghai People Press, 1991:9-12.
[4] Zhao ZL, Dorje Gaawe, Wang ZT. Identification of medicinal plants used as Tibetan Traditional Medicine Jie-Ji[J]. J Ethnopharmacol, 2010, 132:122-126.
[5] Ho TN. Gentianaceae in Flora Reipublicae Popularis Sinicae:Vol 62(中国植物志:62卷)[M]. Beijing:Science Press, 1988:14-64.
[6] Gu CY, Zhao ZL, Wu JR, et al. Pharmacognostical study on Gentiana lhassica Burk. and Gentiana waltonii Burk.[J]. Chin J Inf Tradit Chin Med (中国中医药信息杂志), 2010, 17:41-43.
[7] Shinozaki K, Ohme M, Tanaka M, et al. The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression[J]. EMBO J, 1986, 5:2043-2049.
[8] Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast gene organization deduced from complete sequence of Liverwort Marchantia polymorpha chloroplast DNA[J]. Nature, 1986, 322:572-574.
[9] Palmer JD, Stein DB. Conservation of chloroplast genome structure among vascular plants[J]. Curr Genet, 1986, 10:823-833.
[10] Palmer JD. Plastid chromosomes:structure and evolution. In:Vasil IK, Bogorad L (eds) Cell Culture and Somatic Cell Genetics in Plants, the Molecular Biology of Plastids, 7A[M]. San Diego, Academic Press, 1991:5-53.
[11] Clegg MT, Gaut BS, Learn GH, et al. Rates and patterns of chloroplast DNA evolution[J]. Proc Natl Acad Sci U S A, 1994, 91:6795-6801.
[12] Daniell H, Lin CS, Yu M, et al. Chloroplast genomes:diversity, evolution, and applications in genetic engineering[J]. Genome Biol, 2016, 17:134.
[13] Sabater B. Evolution and function of the chloroplast. current investigations and perspectives[J]. Int J Mol Sci, 2018, 19:3095.
[14] Zhang YJ, Li DZ. Advances in phylogenomics based on complete chloroplast genomes[J]. Plant Divers Resour (植物分类与资源学报), 2011, 33:365-375.
[15] Ni LH, Zhao ZL, Mi M. Advances in chloroplast genome of medicinal plants[J]. J Chin Med Mater (中药材), 2015, 38:1990-1994.
[16] Ni LH, Zhao ZL. A morphometric comparison of three closely related species of Gentiana (Gentianaceae), endemic to the region of the Qinghai-Tibet Plateau[J]. Botany, 2018, 96:209-215.
[17] Zong FF, Zhao ZL, Ni LH, et al. DNA fingerprinting and genetic diversity in a threatened alpine medicinal plant, Gentiana crassicaulis (Gentianaceae) using AFLP[J]. Acta Pharm Sin (药学学报), 2020, 55:1941-1950.
[18] Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf material[J]. Phyochem Bull, 1987, 19:11-15.
[19] Qian J, Song J, Gao H, et al. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza[J]. PLoS One, 2013, 8:e57607.
[20] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci U S A, 1977, 74:5463-5467.
[21] Ni LH, Zhao ZL, Xu HX, et al. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion[J]. Gene, 2015, 577:281-288.
[22] Zhou T, Wang J, Jia Y, et al. Comparative chloroplast genome analyses of species in Gentiana section Cruciata (Gentianaceae) and the development of authentication markers[J]. Int J Mol Sci, 2018, 19:1962.
[23] Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA[J]. Bioinformatics, 2004, 20:3252-3255.
[24] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool (BLAST)[J]. J Mol Biol, 1990, 215:403-410.
[25] Goremykin VV, Barbara H, Hirsch-Ernst KI, et al. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications[J]. Mol Biol Evol, 2005, 22:1813-1822.
[26] Lohse M, Drechsel O, Bock R. Organellar Genome DRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Curr Genet, 2007, 52:267-274.
[27] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28:2731-2739.
[28] Ronquist F, Huelsenbeck JP. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19:1572-1574.
[29] Xiong,B,Zhao ZL, Ni LH, et al. DNA-based identification of Gentiana robusta and related species[J]. China J Chin Mater Med (中国中药杂志), 2015, 40:4680-4685.
[30] Li XJ, Wang LY, Yang HL, et al. Confirmation of natural hybrids between Gentiana straminea and G. siphonantha (Gentianaceae) based on molecular evidence[J]. Acta Bot Yunnan (云南植物研究), 2007, 29:91-97.
相关文献:
1.杨俏俏, 姜梅, 王立强, 陈海梅, 刘昶, 黄林芳.药食两用藠头叶绿体基因组解析、比较基因组学及系统发育研究[J]. 药学学报, 2019,54(1): 173-181
2.魏似婕, 赵志礼, 倪梁红, 吴靳荣, 高娜娜, 嘎务.藏药“巴莴色保”基原鉴定及其叶绿体全基因组序列分析[J]. 药学学报, 2018,53(6): 1009-1015