药学学报, 2021, 56(10): 2597-2611
陈韡亚, 杨飞飞, 廖永红. 前药技术在肺部吸入药物研发中的应用[J]. 药学学报, 2021, 56(10): 2597-2611.
CHEN Wei-ya, YANG Fei-fei, LIAO Yong-hong. The application of prodrug technology in inhaled medicines[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2597-2611.

陈韡亚1, 杨飞飞1, 廖永红1,2,3*
1. 中国医学科学院、北京协和医学院药用植物研究所, 北京 100193;
2. 江苏康缘药业股份有限公司, 江苏 连云港 222001;
3. 中药制药过程新技术国家重点实验室, 江苏 连云港 222001
关键词:    前体药物      吸入治疗      药物设计      生物药剂学      药代动力学     
The application of prodrug technology in inhaled medicines
CHEN Wei-ya1, YANG Fei-fei1, LIAO Yong-hong1,2,3*
1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
2. Jiangsu Kanion Parmaceutical Co., Ltd., Lianyungang 222001, China;
3. State KeyLaboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China
Compared with systemic administration such as oral delivery or injection, inhaled medicines directly locate in the respiratory tract to exert therapeutic effects, offering obvious advantages in the treatment of respiratory diseases. Marketed inhaled medicines are yet difficult to meet the clinical demands, and there are considerable challenges in the discovery and development of novel inhaled medicines due to the lack of experiences- and property-based rules for inhaled compounds. Personalized modification of candidate drugs through prodrug technology to meet the requirements of inhalation therapy is the current alternative approach for inhaled drug development. In this review, we intend to summary the applications of prodrug technology in the research of inhaled medicines over the past 20 years. These studies have shown that esterified prodrugs and macromolecule conjugates could effectively prolong lung retention; mannose modification or acid-sensitive bond connection can achieve targeted drug release in alveolar macrophages; personalized modified prodrugs can obtain suitable physicochemical properties for pulmonary delivery and reduce drug toxicity. In general, the application of prodrug technology can modify the physicochemical and biopharmaceutical properties of drugs and may promote the discovery and development of novel inhaled medicines.
Key words:    prodrug    inhalation    drug design    biopharmaceutics    pharmacokinetics   
收稿日期: 2021-04-21
DOI: 10.16438/j.0513-4870.2021-0588
基金项目: 中药制药过程新技术国家重点实验室开放基金资助项目(SKL2020M0201).
通讯作者: 廖永红,Tel:86-10-57833268,E-mail:yhliao@implad.ac.cn
Email: yhliao@implad.ac.cn
PDF(3008KB) Free
陈韡亚  在本刊中的所有文章
杨飞飞  在本刊中的所有文章
廖永红  在本刊中的所有文章

[1] Williams DM, Rubin BK. Clinical pharmacology of bronchodilator medications[J]. Respir Care, 2018, 63:641-654.
[2] Strong P, Ito K, Murray J, et al. Current approaches to the discovery of novel inhaled medicines[J]. Drug Discov Today, 2018, 23:1705-1717.
[3] Chu EK, Drazen JM. Asthma:one hundred years of treatment and onward[J]. Am J Respir Crit Care Med, 2005, 171:1202-1208.
[4] Jiang XH, Xing XY, Wang XC, et al. Drugs and drug delivery strategies for treatment of pulmonary arterial hypertension[J]. Acta Pharm Sin (药学学报), 2021, 56:1332-1342.
[5] Lipinski CA. Lead- and drug-like compounds:the rule-of-five revolution[J]. Drug Discov Today Technol, 2004, 1:337-341.
[6] Yamashita M. Laninamivir and its prodrug, cs-8958:long-acting neuraminidase inhibitors for the treatment of influenza[J]. Antivir Chem Chemother, 2010, 21:71-84.
[7] Ikematsu H, Kawai N. Laninamivir octanoate:a new long-acting neuraminidase inhibitor for the treatment of influenza[J]. Expert Rev Anti Infect Ther, 2011, 9:851-857.
[8] Koyama K, Ogura Y, Nakai D, et al. Identification of bioactivating enzymes involved in the hydrolysis of laninamivir octanoate, a long-acting neuraminidase inhibitor, in human pulmonary tissue[J]. Drug Metab Disposition, 2014, 42:1031-1038.
[9] Taylor G. The absorption and metabolism of xenobiotics in the lung[J]. Adv Drug Del Rev, 1990, 5:37-61.
[10] Hukkanen J, Pelkonen O, Hakkola J, et al. Expression and regulation of xenobiotic-metabolizing cytochrome p450(cyp) enzymes in human lung[J]. Crit Rev Toxicol, 2002, 32:391-411.
[11] Enlo-Scott Z, Bäckström E, Mudway I, et al. Drug metabolism in the lungs:opportunities for optimising inhaled medicines[J]. Expert Opin Drug Metab Toxicol, 2021, 17:611-625.
[12] Bo O, Bondesson E, Borgstrm L, et al. Pulmonary drug metabolism, clearance, and absorption[M]//Smyth H, Hickey A.Controlled Pulmonary Drug Delivery. New York:Springer, 2011:21-50.
[13] Cooper AE, Ferguson D, Grime K. Optimisation of DMPK by the inhaled route:challenges and approaches[J]. Curr Drug Metab, 2012, 13:457-473.
[14] MacIntyre AC, Cutler DJ. The potential role of lysosomes in tissue distribution of weak bases[J]. Biopharm Drug Dispos, 1988, 9:513-526.
[15] Barnes PJ. The pharmacological properties of tiotropium[J]. Chest, 2000, 117:63S-66S.
[16] Brattsand R, Miller-Larsson A. The role of intracellular esterification in budesonide once-daily dosing and airway selectivity[J]. Clin Ther, 2003, 25:28-41.
[17] Albert A. Chemical aspects of selective toxicity[J]. Nature, 1958, 182:421-423.
[18] Testa B. Prodrug research:futile or fertile?[J]. Biochem Pharmacol, 2004, 68:2097-2106.
[19] Abet V, Filace F, Recio J, et al. Prodrug approach:an overview of recent cases[J]. Eur J Med Chem, 2017, 127:810-827.
[20] Zhao Y, Yang CY, Zhang Q, et al. Research progress on metabolism and efficacy of small molecular prodrug nanosystems responsive to tumor redox microenvironment[J]. Acta Pharm Sin (药学学报), 2021, 56:476-486.
[21] Niu C, Wang DG, Zhang TH, et al. Synthesis and anti-inflammatory activity of curcumin succinate prodrugs[J]. Acta Pharm Sin (药学学报), 2018, 53:2085-2092.
[22] Li Z, Wang J, Zhou Y, et al. Lead compound optimization strategy (3)- structure modification strategies for improving water solubility[J]. Acta Pharm Sin (药学学报), 2014, 49:1238-1247.
[23] Hsu CH, Jay M, Bummer PM, et al. Chemical stability of esters of nicotinic acid intended for pulmonary administration by liquid ventilation[J]. Pharm Res, 2003, 20:918-925.
[24] Dhir A, Zolkowska D, Murphy RB, et al. Seizure protection by intrapulmonary delivery of propofol hemisuccinate[J]. J Pharmacol Exp Ther, 2011, 336:215-222.
[25] Bayard FJC, Thielemans W, Pritchard DI, et al. Polyethylene glycol-drug ester conjugates for prolonged retention of small inhaled drugs in the lung[J]. J Control Release, 2013, 171:234-240.
[26] Luo T, Loira-Pastoriza C, Patil HP, et al. Pegylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma[J]. J Control Release, 2016, 239:62-71.
[27] Luo T, Magnusson J, Préat V, et al. Synthesis and in vitro evaluation of polyethylene glycol-paclitaxel conjugates for lung cancer therapy[J]. Pharm Res, 2016, 33:1671-1681.
[28] Nurbaeti SN, Brillault J, Tewes F, et al. Sustained-release microparticle dry powders of chloramphenicol palmitate or thiamphenicol palmitate prodrugs for lung delivery as aerosols.[J]. Eur J Pharm Sci, 2019, 138:105028.
[29] Su FY, Srinivasan S, Lee B, et al. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections[J]. J Control Release, 2018, 287:1-11.
[30] Koussoroplis SJ, Paulissen G, Tyteca D, et al. Pegylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract[J]. J Control Release, 2014, 187:91-100.
[31] Boisson M, Gregoire N, Couet W, et al. Colistin in critically ill patients[J]. Minerva Anestesiol, 2013, 79:200-208.
[32] Sys W, Li J, Porter CJH, et al. Population pharmacokinetics of colistin methanesulfonate in rats:achieving sustained lung concentrations of colistin for targeting respiratory infections[J]. Antimicrob Agents Chemother, 2013, 57:5087-5095.
[33] Landersdorfer CB, Nguyen TH, Lieu LT, et al. Substantial targeting advantage achieved by pulmonary administration of colistin methanesulfonate:insights from a large animal model[J]. Antimicrob Agents Chemother, 2016, 61:e01934-16.
[34] Conole D, Keating GM. Colistimethate sodium dry powder for inhalation:a review of its use in the treatment of chronic pseudomonas aeruginosa infection in patients with cystic fibrosis[J]. Drugs, 2014, 74:377-387.
[35] Boisson M, Grégoire N, Cormier M, et al. Pharmacokinetics of nebulized colistin methanesulfonate in critically ill patients[J]. J Antimicrob Chemother, 2017, 72:2607-2612.
[36] Valachis A, Samonis G, Kofteridis DP. The role of aerosolized colistin in the treatment of ventilator-associated pneumonia:a systematic review and metaanalysis[J]. Crit Care Med, 2015, 43:527-533.
[37] Forde E, Humphreys H, Greene CM, et al. Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis[J]. Antimicrob Agents Chemother, 2014, 58:978-985.
[38] Forde É, Kelly G, Sweeney L, et al. Vibrating mesh nebulisation of pro-antimicrobial peptides for use in cystic fibrosis[J]. Pharmaceutics, 2019, 11:239.
[39] Xie Y, Aillon KL, Cai S, et al. Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer[J]. Int J Pharm, 2010, 392:156-163.
[40] Zou Y, Fu H, Ghosh S, et al. Antitumor activity of hydrophilic paclitaxel copolymer prodrug using locoregional delivery in human orthotopic non-small cell lung cancer xenograft models[J]. Clin Cancer Res, 2004, 10:7382-7391.
[41] Campa CC, Silva RL, Margaria JP, et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis[J]. Nat Commun, 2018, 9:5232.
[42] Landers JJ, Cao Z, Lee I, et al. Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers[J]. J Infect Dis, 2002, 186:1222-1230.
[43] Reuter JD, Myc A, Hayes MM, et al. Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers[J]. Bioconjug Chem, 1999, 10:271-278.
[44] Katsumi H, Takashima M, Sano J, et al. Development of polyethylene glycol-conjugated alendronate, a novel nitrogen-containing bisphosphonate derivative:evaluation of absorption, safety, and effects after intrapulmonary administration in rats[J]. J Pharm Sci, 2011, 100:3783-3792.
[45] Changsan N, Sinsuebpol C. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide[J]. Pharm Dev Technol, 2021, 26:181-192.
[46] Eedara BB, Tucker IG, Das SC. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis[J]. Int J Pharm, 2016, 506:174-183.
[47] Rangnekar B, Momin MAM, Eedara BB, et al. Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis[J]. Int J Pharm, 2019, 570:118689.
[48] Kai R, Kanniess F, Biberger C, et al. Comparison of the oropharyngeal deposition of inhaled ciclesonide and fluticasone propionate in patients with asthma[J]. J Clin Pharmacol, 2013, 45:146-152.
[49] Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs[J]. Adv Drug Del Rev, 2014, 75:81-91.
[50] Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled ciclesonide[J]. J Clin Pharmacol, 2013, 47:782-789.
[51] Korenblat PE. Ciclesonide and the treatment of asthma[J]. Expert Opin Pharmacother, 2010, 11:463-479.
[52] Edsbäcker S, Johansson CJ. Airway selectivity:an update of pharmacokinetic factors affecting local and systemic disposition of inhaled steroids[J]. Basic Clin Pharmacol Toxicol, 2010, 98:523-536.
[53] Shao J, Wang Y, Hochhaus G. Semi-mechanistic PK/PD model to assess pulmonary targeting of beclomethasone dipropionate and its active metabolite[J]. Eur J Pharm Sci, 2021, 159:105699.
[54] N'Guessan A, Fattal E, Chapron D, et al. Dexamethasone palmitate large porous particles:a controlled release formulation for lung delivery of corticosteroids[J]. Eur J Pharm Sci, 2018, 113:185-192.
[55] Leifer FG, Konicek DM, Chen KJ, et al. Inhaled treprostinil-prodrug lipid nanoparticle formulations provide long-acting pulmonary vasodilation[J]. Drug Res, 2018, 68:605-614.
[56] Chapman RW, Li Z, Corboz MR, et al. Inhaled hexadecyl-treprostinil provides pulmonary vasodilator activity at significantly lower plasma concentrations than infused treprostinil[J]. Pulm Pharmacol Ther, 2018, 49:104-111.
[57] Corboz MR, Zhang J, LaSala D, et al. Therapeutic administration of inhaled INS1009, a treprostinil prodrug formulation, inhibits bleomycin-induced pulmonary fibrosis in rats[J]. Pulm Pharmacol Ther, 2018, 49:95-103.
[58] Chapman RW, Corboz MR, Malinin VS, et al. An overview of the biology of a long-acting inhaled treprostinil prodrug[J]. Pulm Pharmacol Ther, 2021, 65:102002.
[59] Corboz MR, Li Z, Malinin V, et al. Preclinical pharmacology and pharmacokinetics of inhaled hexadecyl-treprostinil (c16tr), a pulmonary vasodilator prodrug[J]. J Pharmacol Exp Ther, 2017, 363:348-357.
[60] Ong W, Nowak P, Cu Y, et al. Sustained pulmonary delivery of a water-soluble antibiotic without encapsulating carriers[J]. Pharm Res, 2016, 33:563-572.
[61] Hu X, Yang FF, Wei XL, et al. Curcumin acetate nanocrystals for sustained pulmonary delivery:preparation, characterization and in vivo evaluation[J]. J Biomed Nanotechnol, 2017, 13:99-109.
[62] Rautio J, Meanwell NA, Di L, et al. The expanding role of prodrugs in contemporary drug design and development[J]. Nat Rev Drug Discov, 2018, 17:559-587.
[63] Ryan GM, Kaminskas LM, Kelly BD, et al. Pulmonary administration of PEGylated polylysine dendrimers:absorption from the lung versus retention within the lung is highly size-dependent[J]. Mol Pharm, 2013, 10:2986-2995.
[64] Gursahani H, Riggs-Sauthier J, Pfeiffer J, et al. Absorption of polyethylene glycol (PEG) polymers:the effect of PEG size on permeability[J]. J Pharm Sci, 2009, 98:2847-2856.
[65] Mcleod VM, Chan LJ, Ryan GM, et al. Optimal PEGylation can improve the exposure of interferon in the lungs following pulmonary administration[J]. J Pharm Sci, 2015, 104:1421-1430.
[66] Napagolla R, Guru BR, Kurtoglu YE, et al. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation[J]. Int J Pharm, 2010, 399:140-147.
[67] Zhong Q, Bielski ER, Rodrigues LS, et al. Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis[J]. Mol Pharm, 2016, 13:2363-2375.
[68] Zhong Q, da Rocha SR. Poly(amidoamine) dendrimer-doxorubicin conjugates:in vitro characteristics and pseudosolution formulation in pressurized metered-dose inhalers[J]. Mol Pharm, 2016, 13:1058-1072.
[69] Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy[J]. J Control Release, 2014, 183:18-26.
[70] Kaminskas LM, Kelly BD, McLeod VM, et al. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker[J]. J Control Release, 2011, 152:241-248.
[71] Ishiguro S, Cai S, Uppalapati D, et al. Intratracheal administration of hyaluronan-cisplatin conjugate nanoparticles significantly attenuates lung cancer growth in mice[J]. Pharm Res, 2016, 33:2517-2529.
[72] Gupta P, Authimoolam SP, Hilt JZ, et al. Quercetin conjugated poly(β-amino esters) nanogels for the treatment of cellular oxidative stress[J]. Acta Biomater, 2015, 27:194-204.
[73] Choi SH, Byeon HJ, Choi JS, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer[J]. J Control Release, 2015, 197:199-207.
[74] Waters RC, Hochhaus G. Characterization of a dextran-budesonide prodrug for inhalation therapy[J]. Eur J Pharm Sci, 2019, 129:58-67.
[75] Saavedra JE, Southan GJ, Davies KM, et al. Localizing antithrombotic and vasodilatory activity with a novel, ultrafast nitric oxide donor[J]. J Med Chem, 1996, 39:4361-4365.
[76] Jeh HS, Lu S, George SC. Encapsulation of PROLI/NO in biodegradable microparticles[J]. J Microencapsul, 2004, 21:3-13.
[77] Das D, Chen J, Srinivasan S, et al. Synthetic macromolecular antibiotic platform for inhalable therapy against aerosolized intracellular alveolar infections[J]. Mol Pharm, 2017, 14:1988-1997.
[78] Chen J, Su FY, Das D, et al. Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections[J]. Biomaterials, 2019, 195:38-50.
[79] Chavas TEJ, Su FY, Srinivasan S, et al. A macrophage-targeted platform for extending drug dosing with polymer prodrugs for pulmonary infection prophylaxis[J]. J Control Release, 2020, 330:284-292.
[80] Tseng CL, Su WY, Yen KC, et al. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation[J]. Biomaterials, 2009, 30:3476-3485.
[81] Xu C, Wang P, Zhang J, et al. Pulmonary codelivery of doxorubicin and siRNA by pH-sensitive nanoparticles for therapy of metastatic lung cancer[J]. Small, 2015, 11:4321-4333.
[82] Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy:macrophage-targeting and pH-sensitive properties[J]. Drug Deliv Transl Res, 2021, 11:1218-1235.
[83] Kim EJ, Bhuniya S, Lee H, et al. An activatable prodrug for the treatment of metastatic tumors[J]. J Am Chem Soc, 2014, 136:13888-13894.
[84] Dong Z, Hamid KA, Gao Y, et al. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats[J]. J Pharm Sci, 2011, 100:1866-1878.
[85] Youn YS, Kwon MJ, Na DH, et al. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin:optimization by PEG size selection[J]. J Control Release, 2008, 125:68-75.
[86] Lee KC, Chae SY, Kim TH, et al. Intrapulmonary potential of polyethylene glycol-modified glucagon-like peptide-1s as a type 2 anti-diabetic agent[J]. Regul Pept, 2009, 152:101-107.
[87] CLKM Leach, Bueche B, Fishburn S, et al. Modifying the pulmonary absorption and retention of proteins through PEGylation[J]. Respir Drug Deliv, 2004, 1:69-78.
[88] Gagnadoux F, Leblond V, Vecellio L, et al. Gemcitabine aerosol:in vitro antitumor activity and deposition imaging for preclinical safety assessment in baboons[J]. Cancer Chemother Pharmacol, 2006, 58:237-224.
[89] Rodriguez CO, Crabbs TA, Wilson DW, et al. Aerosol gemcitabine:preclinical safety and in vivo antitumor activity in osteosarcoma-bearing dogs[J]. J Aerosol Med Pulm Drug Deliv, 2010, 23:197-206.
[90] Lemarie E, Vecellio L, Hureaux J, et al. Aerosolized gemcitabine in patients with carcinoma of the lung:feasibility and safety study[J]. J Aerosol Med Pulm Drug Deliv, 2011, 24:261-270.
[91] Cheng KW, Wong CC, Alston N, et al. Aerosol administration of phospho-sulindac inhibits lung tumorigenesis[J]. Mol Cancer Ther, 2013, 12:1417-1428.
[92] Jadwiga W, Peter C, Klaus R. Roflumilast:a review of its use in the treatment of COPD[J]. Int J Chron Obstruct Pulmon Dis, 2016, 11:81-90.
[93] Murad HA, Habib HS, Rafeeq MM, et al. Co-inhalation of roflumilast, rather than formoterol, with fluticasone more effectively improves asthma in asthmatic mice[J]. Exp Biol Med, 2017, 242:516-526.
[94] Suzuki ÉY, Amaro MI, de Almeida GS, et al. Development of a new formulation of roflumilast for pulmonary drug delivery to treat inflammatory lung conditions[J]. Int J Pharm, 2018, 550:89-99.
[95] Paik J. Levodopa inhalation powder:a review in parkinson's disease[J]. Drugs, 2020, 80:821-828.
[96] Abbina S, Parambath A. PEGylation and its alternatives:a summary[M]//Parambath A. Engineering of Biomaterials for Drug Delivery Systems. Woodhead Publishing, 2018:363-376.
[97] Giembycz MA. Can the anti-inflammatory potential of PDE4 inhibitors be realized:guarded optimism or wishful thinking?[J]. Br J Pharmacol, 2008, 155:288-290.