药学学报, 2021, 56(10): 2612-2621
曾安娜, 王雪寒, 吕爱平*, 杨智钧*. 肺部给药用高分子多孔微球的研究进展[J]. 药学学报, 2021, 56(10): 2612-2621.
ZENG An-na, WANG Xue-han, L� Ai-ping*, YANG Zhi-jun*. Research progress of porous polymer microspheres of pulmonary drug delivery[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2612-2621.

曾安娜, 王雪寒, 吕爱平*, 杨智钧*
香港浸会大学中医药学院, 中国 香港 999077
肺部给药制剂将药物直接递送于肺部组织,可获得较高的局部浓度,有利于肺部疾病治疗,并可能减少药物的全身不良反应,因此成为许多肺部疾病治疗药物的优选,但进入肺部的药物易被肺组织清除,减少了药物的肺内滞留时间,影响疗效。较小粒径(1~5µm)的颗粒虽然易被吸入肺深部,但同时也易被肺巨噬细胞吞噬和清除;较大几何粒径(Dg>5µm)和低密度(ρ<0.4 g·cm-3)的高分子多孔微球(porous polymer microspheres,PPMS)不仅能有效逃避肺泡巨噬细胞吞噬,同时由于空气动力学直径合适,其肺部有效沉积率高,高分子可生物降解且无毒副作用,因此成为肺部给药载体的研究热点。本文结合颗粒肺部清除机制,总结了PPMS的制备材料和方法,以及其质量控制等,并对PPMS的发展提出见解,为PPMS的深入研究提供参考。
关键词:    高分子多孔微球      肺部给药制剂      清除机制      制备材料      制备方法      质量控制     
Research progress of porous polymer microspheres of pulmonary drug delivery
ZENG An-na, WANG Xue-han, L� Ai-ping*, YANG Zhi-jun*
School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
Pulmonary drug delivery agents deliver drugs directly to the lung tissue to obtain higher local concentration, which is beneficial to the treatment of lung diseases, and may reduce the systemic side effects. Therefore, it has become the preferred drug for the treatment of many lung diseases. However, the drugs entering the lungs are easily cleared by the lung tissues, which reduce the retention time of the drugs in the lungs and affects the efficacy. Although particles with a smaller particle size (1-5 µm) are easily inhaled into the lungs, they are also easily swallowed and cleared by lung macrophages. While the porous polymer microspheres (PPMS) with larger geometric diameter (Dg > 5 µm) and low density (ρ < 0.4 g·cm-3) can not only effectively avoid the phagocytosis of alveolar macrophages, but also have a high effective deposition rate in the lungs due to the appropriate aerodynamic diameter, moreover, the polymer is biodegradable and non-toxic, so it has become a research hotspot for pulmonary drug delivery carriers. This article combined with the lung clearance mechanism of granules, summarized the preparation materials and methods of PPMS, as well as its quality control, etc. Furthermore, opinions are also put forward for the development of PPMS, to provide a reference for the in-depth study of PPMS.
Key words:    porous polymer microsphere    pulmonary drug delivery    clearance mechanism    preparation material    preparation method    quality control   
收稿日期: 2021-06-08
DOI: 10.16438/j.0513-4870.2021-0853
基金项目: 香港创新科技署(ITC)项目(ITS-348-18FX).
通讯作者: 吕爱平,Tel:86-852-34112961,E-mail:yzhijun@hkhu.edu.hk;杨智钧,Tel:86-852-34112456,E-mail:aipinglu@hkbu.edu.hk
Email: yzhijun@hkhu.edu.hk;aipinglu@hkbu.edu.hk
PDF(659KB) Free
曾安娜  在本刊中的所有文章
王雪寒  在本刊中的所有文章
吕爱平*  在本刊中的所有文章
杨智钧*  在本刊中的所有文章

[1] Sato H, Tabata A, Moritani T, et al. Design and characterizations of inhalable poly(lactic-co-glycolic acid) microspheres prepared by the fine droplet drying process for a sustained effect of salmon calcitonin[J]. Molecules, 2020, 25:1311.
[2] Jain H, Bairagi A, Srivastava S, et al. Recent advances in the development of microparticles for pulmonary administration[J]. Drug Discov Today, 2020, 25:1865-1872.
[3] Xia Y, Su Y, Wang Q, et al. Preparation, characterization, and pharmacodynamics of insulin-loaded fumaryl diketopiperazine microparticle dry powder inhalation[J]. Drug Deliv, 2019, 26:650-660.
[4] Meenach SA, Kim YJ, Kauffman KJ, et al. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery[J]. Mol Pharm, 2012, 9:290-298.
[5] Gharse S, Fiegel J. Large porous hollow particles:lightweight champions of pulmonary drug delivery[J]. Curr Pharm Des, 2016, 22:2463-2469.
[6] Haddrell AE, Davies JF, Miles RE, et al. Dynamics of aerosol size during inhalation:hygroscopic growth of commercial nebulizer formulations[J]. Int J Pharm, 2014, 463:50-61.
[7] Kim I, Byeon HJ, Kim TH, et al. Doxorubicin-loaded highly porous large PLGA microparticles as a sustained-release inhalation system for the treatment of metastatic lung cancer[J]. Biomaterials, 2012, 33:5574-5583.
[8] Otterson GA, Villalona-Calero MA, Hicks W, et al. Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer[J]. Clin Cancer Res, 2010, 16:2466-2473.
[9] Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs[J]. Adv Drug Deliv Rev, 2014, 75:81-91.
[10] Wang Y, Zhu LH, Chen AZ, et al. One-step method to prepare PLLA porous microspheres in a high-voltage electrostatic anti-solvent process[J]. Materials, 2016, 9:368.
[11] Zhu L, Li M, Liu X, et al. Inhalable oridonin-loaded poly(lactic-co-glycolic) acid large porous microparticles for in situ treatment of primary non-small cell lung cancer[J]. Acta Pharm Sin B, 2017, 7:80-90.
[12] Lu XY, Lv HX. Research advances in materials for microspheres as drug delivery system[J]. J China Pharm Univ (中国药科大学学报), 2018, 49:528-536.
[13] Mao S, Xu J, Cai C, et al. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres[J]. Int J Pharm, 2007, 334:137-148.
[14] Rashid J, Patel B, Nozik-Grayck E, et al. Inhaled sildenafil as an alternative to oral sildenafil in the treatment of pulmonary arterial hypertension (PAH)[J]. J Control Release, 2017, 250:96-106.
[15] Wang C, Yang J, Han H, et al. Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer[J]. Int J Nanomedicine, 2017, 12:827-837.
[16] Zhang H, Hao LZ, Pan JA, et al. Microfluidic fabrication of inhalable large porous microspheres loaded with H2S-releasing aspirin derivative for pulmonary arterial hypertension therapy[J]. J Control Release, 2021, 329:286-298.
[17] Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles[J]. J Aerosol Med Pulm Drug Deliv, 2010, 23:207-217.
[18] Jiaravuthisan P, Maeda A, Takakura C, et al. A membrane-type surfactant protein D (SP-D) suppresses macrophage-mediated cytotoxicity in swine endothelial cells[J]. Transpl Immunol, 2018, 47:44-48.
[19] Ridley C, Thornton DJ. Mucins:the frontline defence of the lung[J]. Biochem Soc Trans, 2018, 46:1099-1106.
[20] Janssen WJ, Stefanski AL, Bochner BS, et al. Control of lung defence by mucins and macrophages:ancient defence mechanisms with modern functions[J]. Eur Respir J, 2016, 48:1201-1214.
[21] Guagliardo R, Pérez-Gil J, De Smedt S, et al. Pulmonary surfactant and drug delivery:focusing on the role of surfactant proteins[J]. J Control Release, 2018, 291:116-126.
[22] Yang TT, Wen BF, Liu K, et al. Cyclosporine A/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system[J]. Artif Cells Nanomed Biotechnol, 2018, 46:552-564.
[23] Makadia HK, Siegel SJ. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers (Basel), 2011, 3:1377-1397.
[24] Tyler B, Gullotti D, Mangraviti A, et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications[J]. Adv Drug Deliv Rev, 2016, 107:163-175.
[25] Kim Y, Sah H. Protein loading into spongelike PLGA microspheres[J]. Pharmaceutics, 2021, 13:137.
[26] Singh MR, Pradhan K, Singh D. Lipid matrix systems with emphasis on lipid microspheres:potent carriers for transcutaneous delivery of bioactives[J]. Curr Drug Deliv, 2012, 9:243-254.
[27] Xu W, Yu Y, Chen YP, et al. Preparation and process optimization of amphotericin B liposome-encapsulated microspheres[J]. Chin J Antibio (中国抗生素杂志), 2018, 43:893-900.
[28] Feng DY, Yuan H, Du YZ, et al. Research progress of lipid microsphere drug delivery system[J]. Mod Med Health (现代医药卫生), 2012, 28:1037-1039.
[29] Riaz S, Fatima N, Rasheed A, et al. Metabolic engineered biocatalyst:a solution for PLA based problems[J]. Int J Biomater, 2018, 2018:1963024.
[30] Muxika A, Etxabide A, Uranga J, et al. Chitosan as a bioactive polymer:processing, properties and applications[J]. Int J Biol Macromol, 2017, 105:1358-1368.
[31] Shan L, Tao EX, Meng QH, et al. Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/β-cyclodextrin microspheres[J]. Drug Des Devel Ther, 2016, 10:417-429.
[32] Dhamecha D, Movsas R, Sano U, et al. Applications of alginate microspheres in therapeutics delivery and cell culture:past, present and future[J]. Int J Pharm, 2019, 569:118627.
[33] Zhang QZ, Yin MM, Yu ML, et al. Research progress of gelatin microspheres[J]. Acta Agrol Sin (农药学学报), 2021. DOI:10.16801/j.issn.1008-7303.2021.0068.
[34] Alipour S, Montaseri H, Tafaghodi M. Inhalable, large porous PLGA microparticles loaded with paclitaxel:preparation, in vitro and in vivo characterization[J]. J Microencapsul, 2015, 32:661-668.
[35] Garcia Contreras L, Sung J, Ibrahim M, et al. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment:insight into rifampicin absorption from the lungs of guinea pigs[J]. Mol Pharm, 2015, 12:2642-2650.
[36] Kamrupi IR, Pokhrel B, Kalita A, et al. Synthesis of macroporous polymer particles by suspension polymerization using supercritical carbon dioxide as a pressure-adjustable porogen[J]. Adv Polym Technol, 2012, 31:154-162.
[37] Gokmen MT, Du Prez FE. Porous polymer particles-a comprehensive guide to synthesis, characterization, functionalization and applications[J]. Prog Polym Sci, 2012, 37:365-405.
[38] Poursina N, Vatanara A, Rouini MR, et al. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process[J]. Acta Pharm, 2016, 66:207-218.
[39] Du J, El-Sherbiny IM, Smyth HD. Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery[J]. AAPS PharmSciTech, 2014, 15:1535-1544.
[40] Hao LZ. Study of Microfluidic-Based ACS 14-Loaded Porous Microspheres for Pulmonary Hypertension Therapy by Pulmonary Administration (微流控技术制备负载ACS14肺部给药多孔微球用于治疗肺动脉高压的研究)[D]. Fujian:Huaqiao University, 2019.
[41] Rosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation[J]. J Control Release, 2004, 99:271-280.
[42] Nie L, Zhang G, Hou R, et al. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres[J]. Colloids Surf B Biointerfaces, 2015, 125:51-57.
[43] Hao YY, Tian L, Yang Y, et al. The research progress of porous microspheres used for pulmonary drug delivery system[J]. Pharm Biotechnol (药物生物技术), 2017, 24:450-453.
[44] Naikwade SR, Bajaj AN, Gurav P, et al. Development of budesonide microparticles using spray-drying technology for pulmonary administration:design, characterization, in vitro evaluation, and in vivo efficacy study[J]. AAPS PharmSciTech, 2009, 10:993-1012.
[45] Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying[J]. Int J Pharm, 2016, 498:82-95.
[46] Ghosh Dastidar D, Saha S, Chowdhury M. Porous microspheres:synthesis, characterisation and applications in pharmaceutical & medical fields[J]. Int J Pharm, 2018, 548:34-48.
[47] Kim H, Park H, Lee J, et al. Highly porous large poly(lactic-co-glycolic acid) microspheres adsorbed with palmityl-acylated exendin-4 as a long-acting inhalation system for treating diabetes[J]. Biomaterials, 2011, 32:1685-1693.
[48] Parilti R, Riva R, Howdle SM, et al. Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide[J]. Int J Pharm, 2018, 549:161-168.
[49] Lin XF, Kankala RK, Tang N, et al. Supercritical fluid-assisted porous microspheres for efficient delivery of insulin and inhalation therapy of diabetes[J]. Adv Healthc Mater, 2019, 8:e1800910.
[50] Szumski M, Buszewski B. Preparation of monolithic capillary chromatographic columns using supercritical fluid as a porogen solvent[J]. Chromatographia, 2014, 77:1009-1017.
[51] García-González CA, Uy JJ, Alnaief M, et al. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method[J]. Carbohydr Polym, 2012, 88:1378-1386.
[52] Gorle BSK, Smirnova I, Arlt W. Adsorptive crystallization of benzoic acid in aerogels from supercritical solutions[J]. J Supercrit Fluids, 2010, 52:249-257.
[53] Ratanajiajaroen P, Ohshima M. Preparation of highly porous β-chitin structure through nonsolvent-solvent exchange-induced phase separation and supercritical CO2 drying[J]. J Supercrit Fluids, 2012, 68:31-38.
[54] García-González CA, Alnaief M, Smirnova I. Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems[J]. Carbohydr Polym, 2011, 86:1425-1438.
[55] Tang C. Preparation of drug-loaded porous microparticles using supercritical solution impregnation for pulmonary drug delivery[J]. J Dalian Univ (大连大学学报), 2017, 38:69-72, 76.
[56] Della Porta G, Falco N, Giordano E, et al. PLGA microspheres by supercritical emulsion extraction:a study on insulin release in myoblast culture[J]. J Biomater Sci Polym Ed, 2013, 24:1831-1847.
[57] Serim TM, Kožák J, Rautenberg A, et al. Spray freeze dried Lyospheres® for nasal administration of insulin[J]. Pharmaceutics, 2021, 13:852.
[58] Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying[J]. Int J Pharm, 2015, 488:136-153.
[59] Wang J, Zhu ZZ, Zhang XH. Spray freeze drying technology and its application in inhalation preparations[J]. Chin J Pharm Ind (中国医药工业杂志), 2018, 49:1083-1090.
[60] Ishwarya SP, Anandharamakrishnan C, Stapley AGF. Spray-freeze-drying:a novel process for the drying of foods and bioproducts[J]. Trends Food Sci Technol, 2015, 41:161-181.
[61] Jin YQ, Qiu Y, Cao K, et al. Inhalable nanocarrier-based drug delivery systems for lung cancer therapy[J]. Chin J Pharm Ind (中国医药工业杂志), 2018, 49:1644-1652.
[62] Mangal S, Gao W, Li T, et al. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers:challenges and opportunities[J]. Acta Pharmacol Sin, 2017, 38:782-797.
[63] Applin SI, Schmitz RC, Tiemsin PI, et al. Further insight into the mechanism of poly(styrene-co-methyl methacrylate) microsphere formation[J]. J Polym Sci A Polym Chem, 2017, 55:2249-2259.
[64] López-Iglesias C, López ER, Fernández J, et al. Modeling of the production of lipid microparticles using PGSS® technique[J]. Molecules, 2020, 25:4927.
[65] Qin FH, Cai Y, Zhao DJ. Preparation of porous rifampicin-loaded PLGA microspheres[J]. Anhui Med (安徽医药), 2015, 19:1241-1245.
[66] Sou T, Bergström CAS. Contemporary formulation development for inhaled pharmaceuticals[J]. J Pharm Sci, 2021, 110:66-86.
[67] Vishwa B, Moin A, Gowda DV, et al. Pulmonary targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis[J]. Pharmaceutics, 2021, 13:79.
[68] Bianco A, Burg SL, Parnell AJ, et al. Control of the porous structure of polystyrene particles obtained by nonsolvent induced phase separation[J]. Langmuir, 2017, 33:13303-13314.
[69] Ren L, Xu J, Zhang Y, et al. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium[J]. Int J Biol Macromol, 2019, 135:898-906.
[70] Cao SS, Zhao ZY, Jin X, et al. Unique double-shelled hollow silica microspheres:template-guided self-assembly, tunable pore size, high thermal stability, and their application in removal of neutral red[J]. J Mater Chem, 2011, 21:19124-19131.
[71] Si T, Wang Y, Wei W, et al. Effect of acrylic acid weight percentage on the pore size in poly(N-isopropyl acrylamide-co-acrylic acid) microspheres[J]. React Funct Polym, 2011, 71:728-735.
[72] Lee CH, Jin ES, Lee JH, et al. Immobilization and stabilization of enzyme in biomineralized calcium carbonate microspheres[J]. Front Bioeng Biotechnol, 2020, 8:553591.
[73] Hao DX, Gong FL, Wei W, et al. Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high surface areas[J]. J Colloid Interface Sci, 2008, 323:52-59.
[74] Carvalho TC, Peters JI, Williams RO 3rd. Influence of particle size on regional lung deposition——what evidence is there?[J]. Int J Pharm, 2011, 406:1-10.
[75] Nishimura S, Takami T, Murakami Y. Porous PLGA microparticles formed by "one-step" emulsification for pulmonary drug delivery:the surface morphology and the aerodynamic properties[J]. Colloids Surf B Biointerfaces, 2017, 159:318-326.
[76] Chen AZ, Yang YM, Wang SB, et al. Preparation of methotrexate-loaded, large, highly-porous PLLA microspheres by a high-voltage electrostatic antisolvent process[J]. J Mater Sci Mater Med, 2013, 24:1917-1925.
[77] State Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Volume 4. Beijing:China Medical Science and Technology Press, 2020:474.
[78] Wang S, Hua YB, Gao X, et al. Research progress of in vitro-in vivo correlation of injectable polylactide-polyglycolide microspheres[J]. Acta Pharm Sin (药学学报), 2021, 56:158-168.
[79] Shen J, Lee K, Choi S, et al. A reproducible accelerated in vitro release testing method for PLGA microspheres[J]. Int J Pharm, 2016, 498:274-282.
[80] Rawat A, Burgess DJ. USP apparatus 4 method for in vitro release testing of protein loaded microspheres[J]. Int J Pharm, 2011, 409:178-184.
[81] Zhu WH, Wu WZ. Powder characteristics and formulation patterns of dry powder inhalers[J]. Chin J Pharm Ind (中国医药工业杂志), 2018, 49:722-729.
[82] Wang YJ, Sun XZ, Xu L, et al. Research progress and prospect of microsphere product[J]. Biochemistry (生物化工), 2017, 3:80-83.