药学学报, 2021, 56(10): 2622-2629
引用本文:
许都昌, 赖开澄, 金义光, 徐远清. 肺部颗粒运动机制模型的研究进展[J]. 药学学报, 2021, 56(10): 2622-2629.
XU Du-chang, LAI Kai-cheng, JIN Yi-guang, XU Yuan-qing. Research progress of pulmonary particle movement mechanical model[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2622-2629.

肺部颗粒运动机制模型的研究进展
许都昌1, 赖开澄1, 金义光2, 徐远清1*
1. 北京理工大学生命学院, 北京 100081;
2. 军事科学院军事医学研究院辐射医学研究所, 北京 100850
摘要:
肺吸入颗粒在肺组织内部运动和沉积对人体的呼吸生理有重要影响。其颗粒运动机制和沉积研究模型对于探究肺部疾病的致病因素及治疗方法有重要的应用价值,如评估肺部雾化给药的优化设计及空气颗粒污染物对肺部的影响等。本文根据建模依据的知识和方法不同,对近年来主要的肺部颗粒运动机制模型进行了分类、梳理和分析,将相应机制模型分为生物学模型、物理学模型和数值模拟模型。生物学模型包括体内成像法和药代动力学方法;物理学模型包括实物实体建模法和微流控芯片建模法;数值模型包括呼吸道模型、气流模拟模型及颗粒模拟模型。同时还对相应的数值求解及流固耦合等模型进行综述,其中,重点分析了格子Boltzmann方法的应用前景。
关键词:          机制模型      颗粒运动      数值模拟      格子Boltzmann方法     
Research progress of pulmonary particle movement mechanical model
XU Du-chang1, LAI Kai-cheng1, JIN Yi-guang2, XU Yuan-qing1*
1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
2. Institute of Radiation Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
Abstract:
The movement and deposition of inhaled particles in the lung tissue have an important influence on the respiratory physiology of human body. The corresponding particle dynamics model plays a vital role in exploring the pathogenic factors and treatment methods of lung diseases. Such as evaluating the optimal design of pulmonary atomization drug delivery and the impact of particulate air pollutants on the lung. According to the different knowledge and modeling methods, this paper classifies, combs and analyzes several representative particle dynamics models in lung airways in recent years. We divided the mechanism models into the biological model, physical model and numerical simulation model. The biological models include in vivo imaging and pharmacokinetic methods; physical models include bionic and microfluidic chip models; the numerical models include respiratory tract model, airflow model and particle model. Moreover, the numerical solution and fluid-structure-interaction models were also reviewed, especially the application prospect of the lattice Boltzmann method.
Key words:    lung    mechanical model    particle movement    numerical computer simulation    lattice Boltzmann method   
收稿日期: 2021-04-29
DOI: 10.16438/j.0513-4870.2021-0651
基金项目: 国家自然科学基金资助项目(81771935).
通讯作者: 徐远清,Tel:18513537806,E-mail:bitxyq@bitedu.cn
Email: bitxyq@bitedu.cn
相关功能
PDF(533KB) Free
打印本文
0
作者相关文章
许都昌  在本刊中的所有文章
赖开澄  在本刊中的所有文章
金义光  在本刊中的所有文章
徐远清  在本刊中的所有文章

参考文献:
[1] Liu X, Rua D, Wokovich A, et al. Particle size distribution analysis of OTC aerosol or powder drug products with potential for inadvertent inhalation exposure to consumers[J]. J Pharm Sci, 2019, 108:1506-1511.
[2] Islam MS, Paul G, Ong HX, et al. A review of respiratory anatomical development, air flow characterization and particle deposition[J]. Int J Env Res Pub Health, 2020, 17:380.
[3] Inglesby TV, Henderson DA, Bartlett JG, et al. Anthrax as a biological weapon:medical and public health management[J]. JAMA, 1999, 281:1735-1745.
[4] Patton JS, Byron PR. Inhaling medicines:delivering drugs to the body through the lungs[J]. Nat Rev Drug Discov, 2007, 6:67-74.
[5] Shachar-Berman L, Ostrovski Y, Koshiyama K, et al. Targeting inhaled fibers to the pulmonary acinus:opportunities for augmented delivery from in silico simulations[J]. Eur J Pharrm Sci, 2019, 137:105003.
[6] Ochs M, Nyengaard JR, Jung A, et al. The number of alveoli in the human lung[J]. Am J Resp Crit Care, 2004, 169:120-124.
[7] Jaafar-Maalej C, Andrieu V, Elaissari A, et al. Assessment methods of inhaled aerosols:technical aspects and applications[J]. Expert Opin Drug Deliv, 2009, 6:941-959.
[8] Dolovich M, Labiris R. Imaging drug delivery and drug responses in the lung[J]. Proc Am Thorac Soc, 2004, 1:329-337.
[9] Sun X, Zhang X, Ren X, et al. Multiscale co-reconstruction of lung architectures and inhalable materials spatial distribution[J]. Adv Sci, 2021, 8:2003941.
[10] Xiroudaki S, Ianni F, Sabbatini S, et al. Preparation, characterization and pharmacokinetics of an inhalable dry powder formulation of a new hydrophobic antibiotic derivative for the treatment of lung infections[J]. J Aerosol Med Pulm Drug Deliv, 2020, 33:14-15.
[11] Pan LL, Zhong DF. Metabolism and pharmacokinetics of drugs applied for the treatment of corona virus disease 2019(COVID-19)[J]. Acta Pharm Sin (药学学报), 2020, 55:2570-2579.
[12] Dhanani JA, Diab S, Chaudhary J, et al. Lung pharmacokinetics of tobramycin by intravenous and nebulized dosing in a mechanically ventilated healthy ovine model[J]. Anesthesiology, 2019, 131:344-355.
[13] Su WC, Chen Y, Xi J. Estimation of the deposition of ultrafine 3D printing particles in human tracheobronchial airways[J]. J Aerosol Sci, 2020, 149:105605.
[14] Lizal F, Elcner J, Jedelsky J, et al. The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways[J]. J Aerosol Sci, 2020, 150:105649.
[15] Farghadan A, Poorbahrami K, Jalal S, et al. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways[J]. Comput Biol Med, 2020, 120:103703.
[16] Sera T, Kamiya N, Fukushima T, et al. Visualizing the flow patterns in an expanding and contracting pulmonary alveolated duct based on microcomputed tomography images[J]. J Biomech Eng, 2021, 143:074501.
[17] Elias-Kirma S, Artzy-Schnirman A, Das P, et al. In situ-like aerosol inhalation exposure for cytotoxicity assessment using airway-on-chips platforms[J]. Front Bioeng Biotech, 2020, 8:91.
[18] Lv H, Dong J, Qiu Y, et al. Microflow in a rhythmically expanding alveolar chip with dynamic similarity[J]. Lab Chip, 2020, 20:2394-2402.
[19] Weibel ER, Cournand AF, Richards DW. Morphometry of the Human Lung[M]. Berlin:Springer, 1963.
[20] Deng Q, Deng L, Miao Y, et al. Particle deposition in the human lung:health implications of particulate matter from different sources[J]. Environ Res, 2019, 169:237-245.
[21] Manshadi MK, Saadat M, Mohammadi M, et al. Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet[J]. Drug deliv, 2019, 26:120-128.
[22] Hofmann W. Regional deposition:deposition models[J]. J Aerosol Med Pulm Drug Deliv, 2020, 33:239-248.
[23] Kolanjiyil AV, Kleinstreuer C. Modeling airflow and particle deposition in a human acinar region[J]. Comput Math Methods Med, 2019, 2019:5952941.
[24] Usmani OS, Mignot B, Kendall I, et al. Predicting lung deposition of extrafine inhaled corticosteroid-containing fixed combinations in patients with chronic obstructive pulmonary disease using functional respiratory imaging:an in silico study[J]. J Aerosol Med Pulm Drug Deliv, 2021, 34:204-211.
[25] Usmani OS, Scichilone N, Mignot B, et al. Airway deposition of extrafine inhaled triple therapy in patients with COPD:a model approach based on functional respiratory imaging computer simulations[J]. Int J Chronic Obstr, 2020, 15:2433.
[26] Meerburg JJ, Andrinopoulou ER, Bos AC, et al. Effect of inspiratory maneuvers on lung deposition of tobramycin inhalation powder:a modeling study[J]. J Aerosol Med Pulm Drug Deliv, 2020, 33:61-72.
[27] Islam MS, Saha SC, Gemci T, et al. Euler-lagrange prediction of diesel-exhaust polydisperse particle transport and deposition in lung:anatomy and turbulence effects[J]. Sci Rep, 2019, 9:12423.
[28] Kumar B, Srivastav VK, Jain A, et al. Study of numerical schemes for the CFD simulation of human airways[J]. Int J Eng Sci, 2019, 11:32-40.
[29] Su WC, Chen Y, Xi J. A new approach to estimate ultrafine particle respiratory deposition[J]. Inhal Toxicol, 2019, 31:35-43.
[30] Kim Y, Tong Z, Chan H, et al. CFD modelling of air and particle flows in different airway models[J]. J Aerosol Sci, 2019, 134:14-28.
[31] Kannan RR, Singh N, Przekwas A, et al. A quasi-3D model of the whole lung:airway extension to the tracheobronchial limit using the constrained constructive optimization and alveolar modeling, using a sac-trumpet model[J]. J Comput Des Eng, 2021, 8:691-704.
[32] Ciloglu D. A numerical study of the aerosol behavior in intra-acinar region of a human lung[J]. Phys Fluids, 2020, 32:103305.
[33] Bass K, Boc S, Hindle M, et al. High-efficiency nose-to-lung aerosol delivery in an infant:development of a validated computational fluid dynamics method[J]. J Aerosol Med Pulm Drug Deliv, 2019, 32:132-148.
[34] Guo Y, Wei J, Ou C, et al. Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation:a steady-state numerical investigation[J]. Aerosol Sci Tech, 2020, 54:869-879.
[35] Issakhov A, Bulgakov R, Zhandaulet Y. Numerical simulation of the dynamics of particle motion with different sizes[J]. Eng Appl Comp Fluid, 2019, 13:1-25.
[36] Koullapis P, Nicolaou L, Kassinos SC. In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways[J]. J Aerosol Sci, 2018, 117:164-188.
[37] Nicolaou L, Checkley W. Differences between cigarette smoking and biomass smoke exposure:an in silico comparative assessment of particulate deposition in the lungs[J]. Environ Res, 2021, 197:111116.
[38] Zhao J, Feng Y, Bezerra M, et al. Numerical simulation of welding fume lung dosimetry[J]. J Aerosol Sci, 2019, 135:113-129.
[39] Gurumurthy A, Kleinstreuer C. Helical fluid-particle flow dynamics for controlling micron-particle deposition in a representative human upper lung-airway model[J]. J Aerosol Sci, 2021, 151:105656.
[40] Ou C, Jian H, Deng Q. Particle deposition in human lung airways:effects of airflow, particle size, and mechanisms[J]. Aerosol Air Qual Res, 2020, 20:2846-2858.
[41] Farkas Á, Lizal F, Elcner J, et al. Numerical simulation of fibre deposition in oral and large bronchial airways in comparison with experiments[J]. J Aerosol Sci, 2019, 136:1-14.
[42] Shachar-Berman L, Ostrovski Y, De Rosis A, et al. Transport of ellipsoid fibers in oscillatory shear flows:implications for aerosol deposition in deep airways[J]. Eur J Pharrm Sci, 2018, 113:145-151.
[43] Haber S, Yitzhak D, Tsuda A. Gravitational deposition in a rhythmically expanding and contracting alveolus[J]. J Appl Physiol, 2003, 95:657-671.
[44] Kiasadegh M, Emdad H, Ahmadi G, et al. Transient numerical simulation of airflow and fibrous particles in a human upper airway model[J]. J Aerosol Sci, 2020, 140:105480.
[45] Fernández-Tena A, Barrio-Perotti R, Blanco-Marigorta E, et al. In silico prototype of a human lung with a single airway to predict particle deposition[J]. Int J Numer Meth Bio, 2020, 36:e3339.
[46] Buess A, Sobac B, Mauroy B, et al. Energy dissipation in an asymmetric tracheobronchial tree:a CFD analysis[C]//Proceedings of the 27th Canadian Congress of Applied Mechanics. Sherbrooke:Université de Sherbrooke, 2019.
[47] Sabz M, Kamali R, Ahmadizade S. Numerical simulation of magnetic drug targeting to a tumor in the simplified model of the human lung[J]. Comput Meth Prog Bio, 2019, 172:11-24.
[48] Ma J, Wang Z, Young J, et al. An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries[J]. J Comput Phys, 2020, 415:109487.
[49] Sui Y, Chew Y, Roy P, et al. Inertia effect on the transient deformation of elastic capsules in simple shear flow[J]. Compu Fluids, 2009, 38:49-59.
[50] Tian FB. Deformation of a capsule in a power-law shear flow[J]. Comput Math Methods Med, 2016, 2016:7981386.
[51] Wang Z, Wei Y, Qian Y. A bounce back-immersed boundary-lattice Boltzmann model for curved boundary[J]. Appl Math Model, 2020, 81:428-440.
[52] Wei Q, Xu YQ, Tang XY, et al. An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays[J]. Acta Mech Sin, 2016, 32:1023-1030.
[53] Zhu L, Yu X, Liu N, et al. A deformable plate interacting with a non-Newtonian fluid in three dimensions[J]. Phys Fluids, 2017, 29:083101.
[54] Dehbi A. A CFD model for particle dispersion in turbulent boundary layer flows[J]. Nucl Eng Des, 2008, 238:707-715.
[55] Ohsaki S, Mitani R, Fujiwara S, et al. Numerical simulation of particle motions in cascade impactor and human respiratory system[C]//Proceedings of the MATEC Web of Conferences. Les Ulis:EDP Sciences, 2021.
[56] Koullapis P, Hofemeier P, Sznitman J, et al. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung[J]. Eur J Pharm Sci, 2018, 113:132-144.
[57] Ahookhosh K, Saidi M, Aminfar H, et al. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways:validating CFD predictions with in vitro data[J]. Int J Pharm, 2020, 587:119599.
[58] Beni HM, Aghaei F, Kamalipour S. Experimental tracking and numerical mapping of novel coronavirus micro-droplet deposition through nasal inhalation in the human respiratory system[J]. Biomech Model Mechanobiol, 2021, 20:1087-1100.
[59] Feng Y, Zhao J, Hayati H, et al. Tutorial:understanding the transport, deposition, and translocation of particles in human respiratory systems using computational fluid-particle dynamics and physiologically based toxicokinetic models[J]. J Aerosol Sci, 2021, 151:105672.
[60] Sommerfeld M, Cui Y, Schmalfuß S. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers[J]. Eur J Pharrm Sci, 2019, 128:299-324.
[61] Ostrovski Y, Dorfman S, Mezhericher M, et al. Targeted drug delivery to upper airways using a pulsed aerosol bolus and inhaled volume tracking method[J]. Flow Turbul Combust, 2019, 102:73-87.
[62] Magramane S, Pápay Z, Turbucz B, et al. Formulation and characterization of pulmonary drug delivery systems[J]. Acta Pharm Hung, 2019, 89:63-83.
[63] Walenga RL, Babiskin AH, Zhao L. In silico methods for development of generic drug-device combination orally inhaled drug products[J]. CPT Pharm Sys Pharmcol, 2019, 8:359-370.