药学学报, 2021, 56(10): 2658-2668
引用本文:
黄粤琪, 陈婷, 王婉梅, 庄波, 苑天宇, 刘岩, 杜丽娜, 魏晓阳, 彭晖, 金义光. 西地那非脂质体的制备及其肺部给药预防高原肺水肿的作用[J]. 药学学报, 2021, 56(10): 2658-2668.
HUANG Yue-qi, CHEN Ting, WANG Wan-mei, ZHUANG Bo, YUAN Tian-yu, LIU Yan, DU Li-na, WEI Xiao-yang, PENG Hui, JIN Yi-guang. Preparation of liposomal sildenafil and its pulmonary delivery for the prevention of high altitude pulmonary edema[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2658-2668.

西地那非脂质体的制备及其肺部给药预防高原肺水肿的作用
黄粤琪1, 陈婷1, 王婉梅1, 庄波1, 苑天宇1, 刘岩1, 杜丽娜1, 魏晓阳2*, 彭晖3*, 金义光1*
1. 军事科学院军事医学研究院辐射医学研究所, 北京 100850;
2. 中国人民解放军总医院第八医学中心呼吸与危重症医学科, 北京 100193;
3. 军事科学院军事医学研究院环境医学与作业医学研究所, 天津 300050
摘要:
高原肺水肿(high altitude pulmonary edema,HAPE)是由于在高海拔地区肺动脉压力升高,血管内液体向肺组织渗出形成,发生快,致死率高。西地那非(sildenafil,SIL)可扩张肺内血管,具有预防高原肺水肿的作用,但目前只有口服片剂和注射液剂型,存在给药剂量大、使用不便和全身不良反应大等问题。本文制备了西地那非脂质体(liposomal sildenafil,LS)并进行肺部给药,考察其预防高原肺水肿的作用。用硫酸铵梯度法制备LS,包封率约100%,粒径116.97 nm,zeta电位-30.93 mV。LS在人工肺液中释放前期的释放速率比SIL快,同时释放更完全。所有动物实验经军事科学院军事医学研究院伦理委员会批准且实验均按照相关指导原则和规定进行。将给药剂量(3 mg·kg-1)相同的SIL、LS及空白脂质体分别灌胃给药和经气管喷入小鼠肺中,将模型组和各给药组小鼠置于模拟5 000 m海拔的低压氧舱中1 h后取出。模型组小鼠在旷场实验中运动总路程降低,不动时间升高,同时血氧饱和度(percutaneous oxygen saturation,SpO2)降低,肺组织中的肿瘤坏死因子-α(TNF-α)水平比正常组小鼠高,还原型谷胱甘肽(reduced glutathione,GSH)水平比正常组小鼠低;给药组中口服西地那非没有明显改善小鼠的生命体征和活动能力,而肺吸入LS却明显改善小鼠活动能力,与模型组相比,血氧饱和度升高,TNF-α和GSH水平均接近正常水平。将给药剂量(3 mg·kg-1)相同的SIL混悬液和LS经气管喷入小鼠肺中,将模型组及给药组小鼠置于低压氧舱中不同时间后取出。模型组小鼠血液中炎性细胞因子TNF-α、白细胞介素-1β(IL-1β)水平比正常组小鼠高,而给药后下降,其中LS组更低,接近正常水平。造模1 h及造模48 h的LS组小鼠血液中IL-1β水平比SIL组低(P <0.05)。模型组小鼠肺组织中缺氧诱导因子-1α(HIF-1α)表达升高,给药后HIF-1α表达降低接近正常水平,LS组的HIF-1α表达比SIL组更低,其中造模48 h的HIF-1α水平有显著性差异(P <0.01)。肺吸入西地那非脂质体是一种有潜力的预防高原肺水肿制剂。
关键词:    西地那非      高原肺水肿      硫酸铵梯度法      脂质体      肺部给药     
Preparation of liposomal sildenafil and its pulmonary delivery for the prevention of high altitude pulmonary edema
HUANG Yue-qi1, CHEN Ting1, WANG Wan-mei1, ZHUANG Bo1, YUAN Tian-yu1, LIU Yan1, DU Li-na1, WEI Xiao-yang2*, PENG Hui3*, JIN Yi-guang1*
1. Beijing Institute of Radiation Medicine, Beijing 100850, China;
2. Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing 100193, China;
3. Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin 300050, China
Abstract:
High altitude pulmonary edema (HAPE) is a result of leaking of the fluids from blood vessel to the lung tissue due to pulmonary artery hypertension in the high altitude place, which happens very quickly and shows high mortality. Sildenafil (SIL) can prevent HAPE by expanding pulmonary vessels; however, only oral tablets and injections of SIL are currently available. The formulations have the disadvantages of high doses, inconvenient use, and high systemic side effects. Here, liposomal sildenafil (LS) was prepared for pulmonary delivery and the prevention of HAPE was explored. The ammonium sulfate gradient method was used for the preparation of LS with a high entrapment efficiency of nearly 100%, the particle size of 116.97 nm, and the zeta potential of -30.93 mV. All animal experiments had been approved by the Ethics Committee of Academy of Military Medicine, Academy of Military Sciences, and carried out in accordance with relevant guidelines and regulations. The dose (3 mg·kg-1 SIL) of sildenafil suspensions, LS or blank liposomes was intragastrically or intratracheally administered to the lungs of mice. The mice with or without treatment were put in the hypobaric oxygen chamber of 5 000 m altitude for 1 h. In the open field text the model mice had the shorter total distances and longer dead time than the healthy mice and they showed the lower percutaneous oxygen saturation (SpO2), the higher tumor necrosis factor-α (TNF-α) levels of and the lower reduced glutathione (GSH) in the lung tissues. By contrast, oral LS remarkably modified the moving ability of the mice and they had the higher SpO2 than the model mice and the similar TNF-α and GSH levels to the healthy mice. Sildenafil suspensions and LS with the same dose (3 mg·kg-1 SIL) were intratracheally administered to mouse lungs, respectively, and the mice of the model group and the treatment groups were put in a hypobaric oxygen chamber for predetermined time. In the rotating rod experiments, the mice in the model group showed shorter drop latency and more drop times than those in the healthy group, indicating that the physical activity of the mice was improved due to treatment. The inflammatory cytokines, TNF-α and interleukin-1β (IL-1β) in the blood of model mice were higher than those from the healthy group and they decreased after treatment, where the LS group maintained the lowest level close to the normal level. IL-1β in the blood of mice in the LS group was lower than that in the SIL group (P < 0.05) 1 hour and 48 hours post-hypoxia. Hypoxia inducible factor-1α (HIF-1α) in the lung tissues of model mice increased but decreased to the normal range after treatment. Moreover, HIF-1α in the LS group was lower than that in the SIL group, where the values were significantly different 48 hours post-hypoxia (P < 0.01). Inhaled liposomal sildenafil is a promising medication for the prevention of HAPE.
Key words:    sildenafil    high altitude pulmonary edema    ammonium sulfate gradient method    liposome    pulmonary drug delivery   
收稿日期: 2021-03-23
DOI: 10.16438/j.0513-4870.2021-0418
基金项目: 国家科技重大专项-重大新药创制基金项目(2018ZX09J18104-001).
通讯作者: 魏晓阳,Tel:13522189978,E-mail:wxy1113@sina.com;彭晖,Tel:13910146703,E-mail:p_h2002@hotmail.com;金义光,Tel:86-10-66931220,E-mail:jinyg@sina.com
Email: wxy1113@sina.com;p_h2002@hotmail.com;jinyg@sina.com
相关功能
PDF(910KB) Free
打印本文
0
作者相关文章
黄粤琪  在本刊中的所有文章
陈婷  在本刊中的所有文章
王婉梅  在本刊中的所有文章
庄波  在本刊中的所有文章
苑天宇  在本刊中的所有文章
刘岩  在本刊中的所有文章
杜丽娜  在本刊中的所有文章
魏晓阳  在本刊中的所有文章
彭晖  在本刊中的所有文章
金义光  在本刊中的所有文章

参考文献:
[1] Wu G, Xu G, Chen DW, et al. Hypoxia exacerbates inflammatory acute lung injury via the toll-like receptor 4 signaling pathway[J]. Front Immunol, 2018, 9:1667.
[2] You HY, Li XX, Pei T, et al. Predictive value of basal exhaled nitric oxide and carbon monoxide for acute mountain sickness[J]. Wild Env Med, 2012, 23:316-324.
[3] Peter B, Marco M, Heimo M, et al. Pulmonary extravascular fluid accumulation in climbers[J]. Lancet, 2002, 360:571.
[4] Purkayastha SS, Ray US, Arora BS, et al. Acclimatization at high altitude in gradual and acute induction[J]. J Appl Physiol, 1995, 79:487-492.
[5] Luks AM, Auerbach PS, Freer L, et al. Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness:2019 update[J]. Wild Env Med, 2019, 30:3-18.
[6] Jung SY, Seo YG, Kim GK, et al. Comparison of the solubility and pharmacokinetics of sildenafil salts[J]. Arch Pharm Res, 2011, 34:451-454.
[7] Jin YG, Li M. Pulmonary drug delivery systems and progress in their applications to lung disease treatment[J]. J Int Pharm Res (国际药学研究杂志), 2015, 42:289-295, 322.
[8] Marie CA, Steve L, Arnaud M, et al. Differential effects of inhaled and intravenous sildenafil in the prevention of the pulmonary endothelial dysfunction due to cardiopulmonary bypass[J]. J Cardiovasc Pharm, 2008, 51:11-17.
[9] Rashid J, Patel B, Nozik GE, et al. Inhaled sildenafil as an alternative to oral sildenafil in the treatment of pulmonary arterial hypertension (PAH)[J]. J Control Release, 2017, 250:96-106.
[10] Elham G, Alireza V, Mohammad RR, et al. Inhaled sildenafil nanocomposites:lung accumulation and pulmonary pharmacokinetics[J]. Pharm Dev Technol, 2016, 21:961-971.
[11] Zhang GL, Xiao ZM, Yu X, et al. Comparative study of zedoary turmeric oil and curcumol dry powder inhalers for treatment of acute lung injury[J]. Acta Pharm Sin (药学学报), 2020, 55:1312-1319.
[12] Zhang J, Li Y, Xiang ML, et al. Preparation and pharmacodynamic study of curcumin liposome dry powder inhalation[J]. Mil Med Sci (军事医学), 2013, 37:692-695.
[13] Zhang MM, Li M, Ge YY, et al. Liposomal melatonin dry powder inhalers for the treatment of primary lung cancer[J]. Acta Pharm Sin (药学学报), 2019, 54:555-564.
[14] Zhang TT, Chen YM, Ge YY, et al. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers[J]. Acta Pharm Sin B, 2018, 8:440-448.
[15] Adnan AB, Lina N, Mahmoud M, et al. Sildenafil citrate[J]. Anal Profiles Drug Subs Excip, 2001, 27:339-376.
[16] Shen H, Wang L, Chen W, et al. Tissue distribution and tumor uptake of folate receptor-targeted epothilone folate conjugate,BMS-753493,in CD2F1 mice after systemic administration[J]. Acta Pharm Sin B, 2016, 6:460-467.
[17] Zhou Y, Chen M, Chai XJ, et al. Investigation of the effect of paclitaxel liposome aerosol inhalation on bleomycin-induced pulmonary fibrosis in rats[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2019, 36:2149-2153.
[18] Liu CM, Shi J, Dai QY, et al. In-vitro and in-vivo evaluation of ciprofloxacin liposomes for pulmonary administration[J]. Drug Dev Ind Pharm, 2015, 41:272-278.
[19] Sdraulig S, Franich R, Tinker RA, et al. In vitro dissolution studies of uranium bearing material in simulated lung fluid[J]. J Environ Radioact, 2008, 99:527-538.
[20] Zhang L, Chen F, Zheng JT, et al. Chitosan-based liposomal thermogels for the controlled delivery of pingyangmycin:design, optimization and in vitro and in vivo studies[J]. Drug Deliv, 2018, 25:690-702.
[21] Luis H, Margarita T, María TC, et al. Assessing anxiety in C57BL/6J mice:a pharmacological characterization of the open-field and light/dark tests[J]. J Pharmacol Toxicol Methods, 2014, 69:108-114.
[22] Hu XN, Fan B. Determination of ionization equilibrium constant of sildenafil by UV spectrophotometry[J]. China Pharm (中国药房), 2006, 17:134-136.
[23] Beal CM. Detecting natural selection in high-altitude human populations[J]. Respir Physiol Neurobiol, 2007, 158:161-171.
[24] Song J, Wang YY, Song P, et al. Sildenafil ameliorated meconium-induced acute lung injury in a neonatal rat model[J]. Int J Clin Exp Med, 2016, 9:10238-10246.
[25] Zhao CY, Wang XL, Peng Y. Role of NRF2 in neurodegenerative diseases and recent progress of its activators[J]. Acta Pharm Sin (药学学报), 2015, 50:375-384.
[26] Zhang JL, Li XY. A review of drug metabolism under hypoxia environment at high altitude[J]. Acta Pharm Sin (药学学报), 2015, 50:1073-1079.
[27] Li YN, Xi MM, Guo Y, et al. Nadph oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity[J]. Toxicol Lett, 2014, 224:165-174.
[28] Yechezkel B. Doxil®-the first FDA-approved nano-drug:lessons learned[J]. J Control Release, 2012, 160:117-134.
[29] Bolotin EM, Cohen R, Bar LK, et al. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes[J]. J Liposome Res, 2008, 4:455-479.
[30] Xu H, Zhang L, Li L, et al. Membrane-loaded doxorubicin liposomes based on ion-pairing technology with high drug loading and pH-responsive property[J]. AAPS PharmSciTech, 2017, 18:2120-2130.
[31] Wang RC, Jiang FM, Zheng QL, et al. Efficacy and safety of sildenafil treatment in pulmonary arterial hypertension:a systematic review[J]. Respir Med, 2014, 108:531-537.
[32] Ghofrani HA, Reichenberger F, Kohstall MG, et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at mount everest base camp:a randomized, double-blind, placebo-controlled crossover trial[J]. Ann Intern Med, 2004, 141:169-177.
[33] Liang F, Huang T, Li BX, et al. High-intensity interval training and moderate-intensity continuous training alleviate β-amyloid deposition by inhibiting NLRP3 inflammasome activation in APPswe/PS1dE9 mice[J]. Neuroreport, 2020, 31:425-432.
[34] Gavrilovskaya IN, Gorbunova EE, Mackow NA, et al. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability[J]. J Virol, 2008, 82:5797-5806.
[35] Vasamsetti SB, Karnewar S, Gopoju R, et al. Resveratrol attenuates monocyte-to-macrophage differentiation and associated inflammation via modulation of intracellular GSH homeostasis:relevance in atherosclerosis[J]. Free Radic Biol Med, 2016, 96:392-405.
[36] Wang MQ, Yan JQ, Cao XY, et al. Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation[J]. Biochem Pharmacol, 2020, 172:113775.
[37] Yang YD, Li MM, Xu G, et al. Targeting mitochondria-associated membranes as a potential therapy against endothelial injury induced by hypoxia[J]. J Cell Biochem, 2019, 120:18967-18978.
[38] Wang XM, Huang M. Mechanisms of metabolite-triggered oncogenic signaling in cancer[J]. Acta Pharm Sin (药学学报), 2019, 54:1755-1770.
相关文献:
1.束家有;全向阳;束怡;广一平;刘有成.月桂酸二乙醇酰胺修饰利福喷丁脂质体的制备、性质及肺部给药[J]. 药学学报, 2006,41(8): 761-764
2.段逸松;于波涛;张志荣.米托蒽醌长循环脂质体的制备及药代动力学的研究[J]. 药学学报, 2002,37(6): 465-468