药学学报, 2021, 56(10): 2682-2688
引用本文:
郭宗儒*. 药物中的分子胶[J]. 药学学报, 2021, 56(10): 2682-2688.
GUO Zong-ru*. Molecular glue in drugs[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2682-2688.

药物中的分子胶
郭宗儒*
中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
大多数药物的作用靶标是蛋白质,研究干预蛋白-蛋白相互作用的药物向来是具有挑战性的课题,分子胶和分子胶降解剂的发现开辟了新的途径。分子胶在结构上具有双功能的配体特征,介导两个蛋白的识别与结合,既可成为发现非可药性靶标的切入点,是化学生物学的有用工具,也可经药物化学的优化发展成为药物。本文以现有的分子胶药物或活性化合物为例简要叙述分子胶的特征。
关键词:    分子胶      降解剂      环孢菌素A      来那度胺      吲地苏兰      聚酮     
Molecular glue in drugs
GUO Zong-ru*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Most small molecule drugs bind to enzymes, receptors or ion channels, which possess binding pocket for drug occupation. However, the study of drugs that interfere with protein-protein interactions has always been a challenging subject. The discovery of molecular glues and degraders has opened an avenue to tackle this issue. With the structural features of bifunctional ligand molecular glues mediate the recognition and binding of two proteins. As a useful tool for chemical biology molecular glue can not only help to find probes to undruggable targets, but also can be developed into drugs through structure optimization in medicinal chemistry. This minireview concisely describes the features of molecular glue using a few existing drugs or active compounds.
Key words:    molecular glue    degrader    cyclosporine A    lenalidomide    indisulam    polykitide   
收稿日期: 2021-07-27
DOI: 10.16438/j.0513-4870.2021-1108
通讯作者: 郭宗儒,Tel:86-10-83155752,E-mail:zrguo@imm.ac.cn
Email: zrguo@imm.ac.cn
相关功能
PDF(702KB) Free
打印本文
0
作者相关文章
郭宗儒*  在本刊中的所有文章

参考文献:
[1] Liu J, Farmer JD, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes[J]. Cell, 1991, 66:807-815.
[2] Schreiber S. The rise of molecular glue[J]. Cell, 2021, 184:3-8.
[3] Fretz H, Albers MW, Galat A, et al. Rapamycin and FK506 binding proteins (immunophilins)[J]. J Am Chem Soc, 1991, 113:1409-1411.
[4] Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Science, 1991, 253:905-909.
[5] Krönke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells[J]. Science, 2014, 343:301-305.
[6] Krönke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS[J]. Nature, 2015, 523:183-188.
[7] Petzold G, Fischer ES, Thomä NH, et al. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase[J]. Nature, 2016, 532:127-130.
[8] Han T, Goralski M, Gaskil N. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15[J]. Science, 2017, 356:eaal3755.
[9] Bussiere DE, Xie LL, Srinivas H, et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex[J]. Nat Chem Biol, 2020, 16:15-23.
[10] Słabicki M, Kozicka Z, Petzold G, et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K[J]. Nature, 2020, 585:293-297.
[11] Roberts AM, Ward CC, Nomura DK. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots[J]. Curr Opin Biotechnol, 2017, 43:25-33.
[12] Isobe Y, Okumura M, McGregor LN, et al. Manumycin polyketides act as molecular glues between UBR7 and P53[J]. Nat Chem Biol, 2020, 16:1189-1198.