药学学报, 2021, 56(10): 2689-2719
史新萌, 刘玉萍, 瞿鼎, 黄琳清, 陈彦. 抑制HIF-1α表达的中药抗肿瘤活性成分研究进展[J]. 药学学报, 2021, 56(10): 2689-2719.
SHI Xin-meng, LIU Yu-ping, QU Ding, HUANG Lin-qing, CHEN Yan. Research progress of anti-tumor components of traditional Chinese medicine inhibiting the expression of HIF-1α[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2689-2719.

史新萌1,2, 刘玉萍1,2, 瞿鼎1,2, 黄琳清1,2, 陈彦1,2*
1. 南京中医药大学附属中西医结合医院, 江苏 南京 210028;
2. 江苏省中医药研究院, 中药组分与微生态研究中心, 江苏 南京 210028
实体肿瘤的重要特征之一是缺氧,缺氧微环境可导致缺氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)的过度表达。HIF-1α是缺氧应答中最为关键的转录因子,可通过激活下游基因表达促进肿瘤细胞异常增殖、肿瘤血管生成、能量代谢异常、耐药性增加、侵袭和转移。因此,下调HIF-1α的表达是一条目前被认为治疗实体肿瘤的很有前景的途径。然而,大多数现有的HIF-1α抑制剂的临床效果受到低效性和高毒性的限制。由此,针对HIF-1α的过度表达研发强效安全的新型药物尤为重要。近年来,大量研究发现多种中药化学成分可直接或间接抑制HIF-1α的激活,在对抗低氧诱导的肿瘤进展过程方面具有广阔的前景。本综述汇总了近十年内直接或间接抑制HIF-1α表达的各种中药抗肿瘤活性成分的研究进展,并进行总结与讨论,以期为进一步研究作为参考。
关键词:    缺氧诱导因子-1α      中药      肿瘤      缺氧      机制     
Research progress of anti-tumor components of traditional Chinese medicine inhibiting the expression of HIF-1α
SHI Xin-meng1,2, LIU Yu-ping1,2, QU Ding1,2, HUANG Lin-qing1,2, CHEN Yan1,2*
1. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China;
2. Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, China
Hypoxia is one of the most significant characteristics of solid tumors. Hypoxia microenvironment can lead to the overexpression of hypoxia inducible factor-1α (HIF-1α). As the most critical transcription factor in the hypoxia response, HIF-1α activates downstream gene expression resulting in abnormal tumor cell proliferation, tumor angiogenesis, unusual energy metabolism, increased drug resistance, invasion, and metastasis. Down-regulation of HIF-1α expression is considered as a promising approach for the treatment of solid tumors, whereas the clinical efficacy of most existing HIF-1α inhibitors is restricted in low efficacy and high toxicity. Therefore, it is particularly important to develop powerful and safe novel drugs against the overexpression of HIF-1α. In recent years, numbers of studies have proved that a variety of chemical components of traditional Chinese medicine can directly or indirectly inhibit the activation of HIF-1α, which has a broad prospect in the fight against hypoxia-induced tumor progression. In this review, we summarized various anti-tumor active components of traditional Chinese medicines responsible for inhibiting the expression of HIF-1α in last ten years and analyzed the corresponding mechanism, with a view to further research as a reference.
Key words:    hypoxia inducible factor-1α    traditional Chinese medicine    tumor    hypoxia    mechanism   
收稿日期: 2021-01-28
DOI: 10.16438/j.0513-4870.2021-0167
基金项目: 江苏省卫生健康委医学科研项目(K2019007);江苏省科教强卫医学重点人才项目(ZDRCA2016036).
通讯作者: 陈彦,Tel:86-25-85608672,E-mail:ychen202@hotmail.com
Email: ychen202@hotmail.com
PDF(1420KB) Free
史新萌  在本刊中的所有文章
刘玉萍  在本刊中的所有文章
瞿鼎  在本刊中的所有文章
黄琳清  在本刊中的所有文章
陈彦  在本刊中的所有文章

[1] Sauer AG, Siegel RL, Jemal A, et al. Updated review of prevalence of major risk factors and use of screening tests for cancer in the United States[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26:1192-1208.
[2] Nalini D, Selvaraj J, Kumar GS. Herbal nutraceuticals:safe and potent therapeutics to battle tumor hypoxia[J]. J Cancer Res Clin Oncol, 2020, 146:1-18.
[3] Höckel M, Vaupel P. Tumor hypoxia:definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst, 2001, 93:266-276.
[4] Masoud GN, Li W. HIF-1α pathway:role, regulation and intervention for cancer therapy[J]. Acta Pharm Sin B, 2015, 5:378-389.
[5] Burroughs SK, Kaluz S, Wang DZ, et al. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics[J]. Future Med Chem, 2013, 5:553-572.
[6] Akanji MA, Rotimi D, Adeyemi OS. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer[J]. Oxid Med Cell Longev, 2019, 2019:8547846.
[7] Tang W, Zhao G. Small molecules targeting HIF-1α pathway for cancer therapy in recent years[J]. Bioorg Med Chem, 2020, 28:115235.
[8] Terzuoli E, Puppo M, Rapisarda A, et al. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1α expression in an AhR-independent fashion[J]. Cancer Res, 2010, 70:6837-6848.
[9] Shamis SAK, McMillan DC, Edwards J. The relationship between hypoxia-inducible factor 1α (HIF-1α) and patient survival in breast cancer:systematic review and meta-analysis[J]. Crit Rev Oncol Hematol, 2021, 159:103231.
[10] Wang Q, Hu DF, Rui Y, et al. Prognosis value of HIF-1α expression in patients with non-small cell lung cancer[J]. Gene, 2014, 541:69-74.
[11] Amankwah EK, Sellers TA, Park JY. Gene variants in the angiogenesis pathway and prostate cancer[J]. Carcinogenesis, 2012, 33:1259-1269.
[12] Erpolat OP, Gocun PU, Akmansu M, et al. Hypoxia-related molecules HIF-1α, CA9, and osteopontin:predictors of survival in patients with high-grade glioma[J]. Strahlenther Onkol, 2013, 189:147-154
[13] Winter SC, Shah KA, Han C, et al. The relation between hypoxia-inducible factor (HIF)-1α and HIF-2α expression with anemia and outcome in surgically treated head and neck cancer[J]. Cancer, 2006, 107:757-766.
[14] Birner P, Schindl M, Obermair A, et al. Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer[J]. Cancer Res, 2000, 60:4693-4696.
[15] Ioannou M, Paraskeva E, Baxevanidou K, et al. HIF-1α in colorectal carcinoma:review of the literature[J]. J BUON, 2015, 20:680-689.
[16] Ye LY, Zhang Q, Bai XL, et al. Hypoxia-inducible factor 1α expression and its clinical significance in pancreatic cancer:a meta-analysis[J]. Pancreatology, 2014, 14:391-397.
[17] Dai X, Pi G, Yang SL, et al. Association of PD-L1 and HIF-1α coexpression with poor prognosis in hepatocellular carcinoma[J]. Transl Oncol, 2018, 11:559-566.
[18] Martínez-García MÁ, Riveiro-Falkenbach E, Rodríguez-Peralto JL, et al. A prospective multicenter cohort study of cutaneous melanoma:clinical staging and potential associations with HIF-1α and VEGF expressions[J]. Melanoma Res, 2017, 27:558-564.
[19] Chen L, Shi Y, Yuan J, et al. HIF-1 alpha overexpression correlates with poor overall survival and disease-free survival in gastric cancer patients post-gastrectomy[J]. PLoS One, 2014, 9:e90678.
[20] Tzao C, Lee SC, Tung HJ, et al. Expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF)-D as outcome predictors in resected esophageal squamous cell carcinoma[J]. Dis Markers, 2008, 25:141-148.
[21] Chen Y, Zhang L, Pan Y, et al. Over-expression of semaphorin 4D, hypoxia-inducible factor-1α and vascular endothelial growth factor is related to poor prognosis in ovarian epithelial cancer[J]. Int J Mol Sci, 2012, 13:13264-13274.
[22] Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29:625-634.
[23] Bahrami A, Atkin SL, Majeed M, et al. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target[J]. Pharmacol Res, 2018, 137:159-169.
[24] Vaupel P, Multhoff G. Fatal alliance of hypoxia-/HIF-1α-driven microenvironmental traits promoting cancer progression[J]. Adv Exp Med Biol, 2020, 1232:169-176.
[25] Wang Z, Li Q, Xia L, et al. Borneol promotes apoptosis of human glioma cells through regulating HIF-1α expression via mTORC1/eIF4E pathway[J]. J Cancer, 2020, 11:4810-4822.
[26] Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. Int J Cancer, 2016, 138:1058-1066.
[27] Palazon A, Goldrath A, Nizet V, et al. HIF transcription factors, inflammation, and immunity[J]. Immunity, 2014, 41:518-528.
[28] Ma Z, Xiang X, Li S, et al. Targeting hypoxia-inducible factor-1, for cancer treatment:recent advances in developing small-molecule inhibitors from natural compounds[J]. Semin Cancer Biol, 2020. DOI:10.1016/j.semcancer.2020.09.011.
[29] Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J]. Proc Natl Acad Sci U S A, 1995, 92:5510-5514.
[30] Min JH, Yang H, Ivan M, et al. Structure of an HIF-1α-pVHL complex:hydroxyproline recognition in signaling[J]. Science, 2002, 296:1886-1889.
[31] Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation[J]. Cell, 2002, 111:709-720.
[32] Tam SY, Wu VWC, Law HKW. Hypoxia-induced epithelial-mesenchymal transition in cancers:HIF-1α and beyond[J]. Front Oncol, 2020, 10:486.
[33] Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. J Zhejiang Univ Sci B, 2015, 16:32-43.
[34] Luo W, Zhong J, Chang R, et al. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1α but not HIF-2α[J]. J Biol Chem, 2010, 285:3651-3663.
[35] Liu Fi, Huang X, Luo Z, et al. Hypoxia-activated PI3K/AKT inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells[J]. Oxid Med Cell Longev, 2019, 2019:6595189.
[36] Zhang J, Guo H, Zhu JS, et al. Inhibition of phosphoinositide 3-kinase/AKT pathway decreases hypoxia inducible factor-1α expression and increases therapeutic efficacy of paclitaxel in human hypoxic gastric cancer cells[J]. Oncol Lett, 2014, 7:1401-1408.
[37] Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression[J]. Genes Dev, 2000, 14:391-396.
[38] Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19:1997-2007.
[39] Cam H, Easton JB, High A, et al. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α[J]. Mol Cell, 2010, 40:509-520.
[40] Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α[J]. Genes Dev, 2000, 14:34-44.
[41] van de Sluis B, Mao X, Zhai Y, et al. COMMD1 disrupts HIF-1α/β dimerization and inhibits human tumor cell invasion[J]. J Clin Invest, 2010, 120:2119-2130.
[42] Sapra P, Kraft P, Pastorino F, et al. Potent and sustained inhibition of HIF-1α and downstream genes by a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects[J]. Angiogenesis, 2011, 14:245-253.
[43] Kim YH, Coon A, Baker AF, et al. Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase[J]. Cancer Chemother Pharmacol, 2011, 68:405-413.
[44] Goey AKL, Chau CH, Sissung TM, et al. Screening and biological effects of marine pyrroloiminoquinone alkaloids:potential inhibitors of the HIF-1α/p300 interaction[J]. J Nat Prod, 2016, 79:1267-1275.
[45] Choi HJ, Eun JS, Kim DK, et al. Icariside II from epimedium koreanum inhibits hypoxia-inducible factor-1α in human osteosarcoma cells[J]. Eur J Pharmacol, 2008, 579:58-65.
[46] Shi L, Zhang G, Zheng Z, et al. Andrographolide reduced VEGFA expression in hepatoma cancer cells by inactivating HIF-1α:the involvement of JNK and MTA1/HDCA[J]. Chem Biol Interact, 2017, 273:228-236.
[47] Tong EJ. The Correlation of Radiosensitizing Effect of Elemene to Anoxia Lung Cancer Cells with MTOR and HIF-1α/Survivin Signal Pathway (榄香烯对乏氧肺癌细胞的放射增敏作用与mTOR及HIF-1α/Survivin通路的相关性研究)[D]. Dalian:Dalian Medical University, 2013.
[48] Yang MH, Zang YS, Huang H, et al. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis[J]. Curr Cancer Drug Targets, 2014, 14:557-566.
[49] Deng M, Xue YJ, Xu LR, et al. Chrysophanol suppresses hypoxia-induced epithelial-mesenchymal transition in colorectal cancer cells[J]. Anat Rec (Hoboken), 2019, 302:1561-1570.
[50] Kim HS, Wannatung T, Lee S, et al. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer[J]. Apoptosis, 2012, 17:938-949.
[51] Du G, Lin H, Wang M, et al. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells[J]. Cancer Chemother Pharmacol, 2010, 65:277-287.
[52] Ye MX, Zhao YL, Li Y, et al. Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms[J]. Phytomedicine, 2012, 19:779-787.
[53] Du Y, Long Q, Zhang L, et al. Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling[J]. Int J Oncol, 2015, 47:2064-2072.
[54] Lee DH, Lee YJ. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1(HIF-1) through inhibiting protein synthesis[J]. J Cell Biochem, 2008, 105:546-553.
[55] Oh SJ, Kim O, Lee JS, et al. Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells[J]. Food Chem Toxicol, 2010, 48:3227-3234.
[56] Lin TH, Hsu WH, Tsai PH, et al. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling[J]. Food Funct, 2017, 8:1558-1568.
[57] Shiau AL, Shen YT, Hsieh JL, et al. Scutellaria barbata inhibits angiogenesis through downregulation of HIF-1α in lung tumor[J]. Environ Toxicol, 2014, 29:363-370.
[58] Ansó E, Zuazo A, Irigoyen M, et al. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism[J]. Biochem Pharmacol, 2010, 79:1600-1609.
[59] Mukund V, Saddala MS, Farran B, et al. Molecular docking studies of angiogenesis target protein HIF-1α and genistein in breast cancer[J]. Gene, 2019, 701:169-172.
[60] Li S, Li J, Dai W, et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death[J]. Br J Cancer, 2017, 117:1518-1528.
[61] Singh-Gupta V, Zhang H, Yunker CK, et al. Daidzein effect on hormone refractory prostate cancer in vitro and in vivo compared to genistein and soy extract:potentiation of radiotherapy[J]. Pharm Res, 2010, 27:1115-1127.
[62] Chen F, Zhuang M, Zhong C, et al. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/AKT/HIF-1α signaling pathway[J]. Oncol Rep, 2015, 33:457-463.
[63] Chen J, Li Z, Chen AY, et al. Inhibitory effect of baicalin and baicalein on ovarian cancer cells[J]. Int J Mol Sci, 2013, 14:6012-6025.
[64] Song X, Yao J, Wang F, et al. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein[J]. Toxicol Appl Pharmacol, 2013, 271:144-155.
[65] Seo S, Seo K, Ki SH, et al. Isorhamnetin inhibits reactive oxygen species-dependent hypoxia inducible factor (HIF)-1α accumulation[J]. Biol Pharm Bull, 2016, 39:1830-1838.
[66] Kim KM, Heo DR, Lee J, et al. 5,3'-Dihydroxy-6,7,4'-trimethoxyflavanone exerts its anticancer and antiangiogenesis effects through regulation of the AKT/mTOR signaling pathway[J]. Chem Biol Interact, 2015, 225:32-39.
[67] Fang J, Xia C, Cao Z, et al. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways[J]. FASEB J, 2005, 19:342-353.
[68] Huang H, Chen AY, Rojanasakul Y, et al. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis[J]. J Funct Foods, 2015, 15:464-475.
[69] Gao H, Xie J, Peng J, et al. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α[J]. Exp Cell Res, 2015, 332:236-246.
[70] Xu B, Jiang C, Han H, et al. Icaritin inhibits the invasion and epithelial-to-mesenchymal transition of glioblastoma cells by targeting EMMPRIN via PTEN/AKT/HIF-1α signalling[J]. Clin Exp Pharmacol Physiol, 2015, 42:1296-1307.
[71] Hou HX, Li DR, Cheng DH, et al. Cellular redox status regulates emodin-induced radiosensitization of nasopharyngeal carcinoma cells in vitro and in vivo[J]. J Pharm (Cairo), 2013, 2013:218297.
[72] Lu HF, Lai KC, Hsu SC, et al. Involvement of matrix metalloproteinases on the inhibition of cells invasion and migration by emodin in human neuroblastoma SH-SY5Y cells[J]. Neurochem Res, 2009, 34:1575-1583.
[73] Shi GH, Zhou L. Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6-mediated pathways in vivo and in vitro[J]. Mol Med Rep, 2018, 18:5191-5197.
[74] Hu L, Cui R, Liu H, et al. Emodin and rhein decrease levels of hypoxia-inducible factor-1α in human pancreatic cancer cells and attenuate cancer cachexia in athymic mice carrying these cells[J]. Oncotarget, 2017, 8:88008-88020.
[75] Yuan X, Tian W, Hua Y, et al. Rhein enhances the cytotoxicity of effector lymphocytes in colon cancer under hypoxic conditions[J]. Exp Ther Med, 2018, 16:5350-5358.
[76] Fernand VE, Losso JN, Truax RE, et al. Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro[J]. Chem Biol Interact, 2011, 192:220-232.
[77] Ding Z, Xu F, Tang J, et al. Physcion 8-O-β-glucopyranoside prevents hypoxia-induced epithelial-mesenchymal transition in colorectal cancer HCT116 cells by modulating EMMPRIN[J]. Neoplasma, 2016, 63:351-361.
[78] Chen X, Gao H, Han Y, et al. RETRACTED:physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN[J]. Eur J Pharmacol, 2015, 764:124-133.
[79] Fu P, Du F, Chen W, et al. Tanshinone IIA blocks epithelial-mesenchymal transition through HIF-1α downregulation, reversing hypoxia-induced chemotherapy resistance in breast cancer cell lines[J]. Oncol Rep, 2014, 31:2561-2568.
[80] Dat NT, Jin X, Lee JH, et al. Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1[J]. J Nat Prod, 2007, 70:1093-1097.
[81] Yang YF, Cao Y, Chen LH, et al. Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells[J]. Cancer Med, 2018, 7:4610-4618.
[82] Guo Y, Han B, Luo K, et al. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation[J]. Biomed Pharmacother, 2017, 85:733-739.
[83] Li Y, Xu Q, Yang W, et al. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells[J]. Gene, 2019, 712:143956.
[84] Ma J, Han L Z, Liang H, et al. Celastrol inhibits the HIF-1α pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells[J]. Oncol Rep, 2014, 32:235-242.
[85] Huang L, Zhang Z, Zhang S, et al. Inhibitory action of celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway[J]. Int J Mol Med, 2011, 27:407-415.
[86] Zhu Y, Liu X, Zhao P, et al. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/AKT/mTOR signaling pathway[J]. Front Pharmacol, 2020, 11:25.
[87] Li W, Yang L, Wang D, et al. Effects of triptolide on epithelial-mesenchymal transition and invasion of melanoma A375 cells[J]. Shanghai J Tradit Chin Med (上海中医药杂志), 2020, 54:153-155.
[88] Li T, Jin MM, Song SL, et al. Triptolide inhibits human hepatocarcinoma SMMC-7721 cells by regulating glycolysis[J]. World J Integr Tradit West Med (世界中西医结合杂志), 2020, 15:981-985, 990.
[89] Dawood M, Ooko E, Efferth T. Collateral sensitivity of parthenolide via NF-κB and HIF-α inhibition and epigenetic changes in drug-resistant cancer cell lines[J]. Front Pharmacol, 2019, 10:542.
[90] Lv Y. The Effect of Excisanin A on the HIF-1α and Its Target Genes in Hepatocellular Carcinoma Cells (尾叶香茶菜素A对肝癌细胞中HIF-1α及其靶基因的影响)[D]. Yanji:Yanbian University, 2017.
[91] Dong J, Chen Y, Yang W, et al. Antitumor and anti-angiogenic effects of artemisinin on breast tumor xenografts in nude mice[J]. Res Vet Sci, 2020, 129:66-69.
[92] Huynh N, Beutler JA, Shulkes A, et al. Glaucarubinone inhibits colorectal cancer growth by suppression of hypoxia-inducible factor 1α and β-catenin via a p-21 activated kinase 1-dependent pathway[J]. Biochim Biophys Acta, 2015, 1853:157-165.
[93] Lingyi F, Wangbing C, Wei G, et al. Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/caspase signaling to suppress human cancer cell growth[J]. PLoS One, 2013, 8:e69240.
[94] Zeng X, Wan L, Wang Y, et al. Effect of low dose of berberine on the radioresistance of cervical cancer cells via a PI3K/HIF-1 pathway under nutrient-deprived conditions[J]. Int J Radiat Biol, 2020, 96:1060-1067.
[95] Lin SK, Tsai SC, Lee CC, et al. Berberine inhibits HIF-1α expression via enhanced proteolysis[J]. Mol Pharmacol, 2004, 66:612-619.
[96] Tsang CM, Cheung KCP, Cheung YC, et al. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma[J]. Biochim Biophys Acta, 2015, 1852:541-551.
[97] Wu YY, Li TM, Zang LQ, et al. Effects of berberine on tumor growth and intestinal permeability in HCT116 tumor-bearing mice using polyamines as targets[J]. Biomed Pharmacother, 2018, 107:1447-1453.
[98] Zhang Q, Zhang C, Yang X, et al. Berberine inhibits the expression of hypoxia induction factor-1α and increases the radiosensitivity of prostate cancer[J]. Diagn Pathol, 2014, 9:98.
[99] Zhang C, Yang X, Zhang Q, et al. Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1α expression[J]. Acta Otolaryngol, 2014, 134:185-192.
[100] Pan Y, Zhang F, Zhao YW, et al. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer[J]. J Cancer, 2017, 8:1679-1689.
[101] Su Q, Wang J, Fan M, et al. Sanguinarine disrupts the colocalization and interaction of HIF-1α with tyrosine and serine phosphorylated-STAT3 in breast cancer[J]. J Cell Mol Med, 2020, 24:3756-3761.
[102] Su Q, Fan M, Wang J, et al. Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10:939.
[103] Hong X, Zhong L, Xie Y, et al. Matrine reverses the warburg effect and suppresses colon cancer cell growth negatively regulating HIF-1α[J]. Front Pharmacol, 2019, 10:1437.
[104] Huang J, Chen ZH, Ren CM, et al. Antiproliferation effect of evodiamine in human colon cancer cells is associated with IGF-1/HIF-1α downregulation[J]. Oncol Rep, 2015, 34:3203-3211.
[105] Ramu A, Kathiresan S, Ali AB. Gramine inhibits angiogenesis and induces apoptosis via modulation of TGF-β signalling in 7,12 dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinoma[J]. Phytomedicine, 2017, 33:69-76.
[106] Wang JY, Wang Z, Li MY, et al. Dictamnine promotes apoptosis and inhibits epithelial-mesenchymal transition, migration, invasion and proliferation by downregulating the HIF-1α and Slug signaling pathways[J]. Chem Biol Interact, 2018, 296:134-144.
[107] Liang B, Zheng CS, Feng GS, et al. Experimental evaluation of inhibitory effect of 10-hydroxycamptothecin on hypoxia-inducible factor-1α expression and angiogenesis in liver tumors after transcatheter arterial embolization[J]. J Vasc Interv Radiol, 2010, 21:1565-1572.
[108] Liu RM, Xu P, Chen Q, et al. A multiple-targets alkaloid nuciferine overcomes paclitaxel-induced drug resistance in vitro and in vivo[J]. Phytomedicine, 2020, 79:153342.
[109] Lou S, Wang Y, Yu Z, et al. Curcumin induces apoptosis and inhibits proliferation in infantile hemangioma endothelial cells via downregulation of MCL-1 and HIF-1α[J]. Medicine (Baltimore), 2018, 97:e9562.
[110] Thomas SL, Zhong D, Zhou W, et al. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1[J]. Cell Cycle, 2008, 7:2409-2417.
[111] Yoysungnoen B, Bhattarakosol P, Patumraj S, et al. Effects of tetrahydrocurcumin on hypoxia-inducible factor-1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice[J]. Biomed Res Int, 2015, 2015:391748.
[112] Zhang Q, Tang X, Lu QY, et al. Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells[J]. Mol Cancer Ther, 2005, 4:1465-1474.
[113] Jung KH, Lee JH, Thien Quach CH, et al. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1α activation[J]. J Nucl Med, 2013, 54:2161-2167.
[114] Zhang M, Zhou X, Zhou K. Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAKT/p70S6K signaling pathways[J]. Int J Mol Med, 2013, 31:621-627.
[115] Wang H, Jia R, Lv T, et al. Resveratrol suppresses tumor progression via inhibiting STAT3/HIF-1α/VEGF pathway in an orthotopic rat model of non-small-cell lung cancer (NSCLC)[J]. Onco Targets Ther, 2020, 13:7057-7063.
[116] Firouzi F, Khoei S, Mirzaei HR. Role of resveratrol on the cytotoxic effects and DNA damages of iododeoxyuridine and megavoltage radiation in spheroid culture of U87MG glioblastoma cell line[J]. Gen Physiol Biophys, 2015, 34:43-50.
[117] Mitani T, Ito Y, Harada N, et al. Resveratrol reduces the hypoxia-induced resistance to doxorubicin in breast cancer cells[J]. J Nutr Sci Vitaminol (Tokyo), 2014, 60:122-128.
[118] Li W, Cao L, Chen X, et al. Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the hedgehog signaling pathway[J]. Oncol Rep, 2016, 35:1718-1726.
[119] Sun Y, Wang H, Liu M, et al. Resveratrol abrogates the effects of hypoxia on cell proliferation, invasion and EMT in osteosarcoma cells through downregulation of the HIF-1α protein[J]. Mol Med Rep, 2015, 11:1975-1981.
[120] Xu QH, Xiao Y, Li XQ, et al. Resveratrol counteracts hypoxia-induced gastric cancer invasion and EMT through hedgehog pathway suppression[J]. Anticancer Agents Med Chem, 2020, 20:1105-1114.
[121] Cao Z, Fang J, Xia C, et al. Trans-3,4,5'-trihydroxystibene inhibits hypoxia-inducible factor 1α and vascular endothelial growth factor expression in human ovarian cancer cells[J]. Clin Cancer Res, 2004, 10:5253-5263.
[122] Subbaramaiah K, Iyengar NM, Morrow M, et al. Prostaglandin E down-regulates sirtuin 1(SIRT1), leading to elevated levels of aromatase, providing insights into the obesity-breast cancer connection[J]. J Biol Chem, 2019, 294:361-371.
[123] Mitani T, Harada N, Tanimori S, et al. Resveratrol inhibits hypoxia-inducible factor-1α-mediated androgen receptor signaling and represses tumor progression in castration-resistant prostate cancer[J]. J Nutr Sci Vitaminol (Tokyo), 2014, 60:276-282.
[124] Jung DB, Lee HJ, Jeong SJ, et al. Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells[J]. Biol Pharm Bull, 2011, 34:850-855.
[125] Butt NA, Kumar A, Dhar S, et al. Targeting MTA1/HIF-1α signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression[J]. Cancer Med, 2017, 6:2673-2685.
[126] Li X, Feng Y, Liu J, et al. Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1α and VEGF expression[J]. J Nutrigenet Nutrigenomics, 2013, 6:169-178.
[127] Liu CC, Lin WW, Wu CC, et al. In vitro lauryl gallate induces apoptotic cell death through caspase-dependent pathway in U87 human glioblastoma cells[J]. In Vivo, 2018, 32:1119-1127.
[128] Luo LX, Li Y, Liu ZQ, et al. Honokiol induces apoptosis, G1 arrest, and autophagy in KRAS mutant lung cancer cells[J]. Front Pharmacol, 2017, 8:199.
[129] Lan KL, Lan KH, Sheu ML, et al. Honokiol inhibits hypoxia-inducible factor-1 pathway[J]. Int J Radiat Biol, 2011, 87:579-590.
[130] Kim A, Ma JY. Piceatannol-3-O-β-D-glucopyranoside (PG) exhibits in vitro anti-metastatic and anti-angiogenic activities in HT1080 malignant fibrosarcoma cells[J]. Phytomedicine, 2019, 57:95-104.
[131] Yoysungnoen P, Wirachwong P, Changtam C, et al. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice[J]. World J Gastroenterol, 2008, 14:2003-2009.
[132] Hong SW, Jung KH, Lee HS, et al. SB365 inhibits angiogenesis and induces apoptosis of hepatocellular carcinoma through modulation of PI3K/AKT/mTOR signaling pathway[J]. Cancer Sci, 2012, 103:1929-1937.
[133] Son MK, Jung KH, Lee HS, et al. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells[J]. Oncol Rep, 2013, 30:801-808.
[134] Chen QJ, Zhang MZ, Wang LX. Gensenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells[J]. Cell Physiol Biochem, 2010, 26:849-858.
[135] Lu J, Chen H, He F, et al. Ginsenoside 20(S)-Rg3 upregulates HIF-1α-targeting miR-519a-5p to inhibit the Warburg effect in ovarian cancer cells[J]. Clin Exp Pharmacol Physiol, 2020, 47:1455-1463.
[136] Liu T, Zhao L, Zhang Y, et al. Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells[J]. PLoS One, 2014, 9:e103887.
[137] Ge X, Zhen F, Yang B, et al. Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1α[J]. J Int Med Res, 2014, 42:628-640.
[138] Ahmmed B, Kampo S, Khan M, et al. Rg3 inhibits gemcitabine-induced lung cancer cell invasiveness through ROS-dependent, NF-κB-and HIF-1α-mediated downregulation of PTX3[J]. J Cell Physiol, 2019, 234:10680-10697.
[139] Liu W, Pan HF, Yang LJ, et al. Panax ginseng C.A. Meyer (Rg3) ameliorates gastric precancerous lesions in Atp4a-/- mice via inhibition of glycolysis through PI3K/AKT/miRNA-21 pathway[J]. Evid Based Complement Alternat Med, 2020, 2020:2672648.
[140] Qiu SP, Li HL, Shi HL, et al. Notoginsenoside Ft1 down-regulates HIF-1α, inhibits cell proliferation, decreases migration and promotes apoptosis in breast cancer cells[J]. Acta Pharm Sin (药学学报), 2016, 51:1091-1097.
[141] Qiu P, Man S, Yang H, et al. Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins[J]. Chem Biol Interact, 2016, 256:55-63.
[142] Law PC, Auyeung KK, Chan LY, et al. Astragalus saponins downregulate vascular endothelial growth factor under cobalt chloride-stimulated hypoxia in colon cancer cells[J]. BMC Complement Altern Med, 2012, 12:160.
[143] Park JJ, Hwang SJ, Park JH, et al. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway[J]. Cell Oncol (Dordr), 2015, 38:111-118.
[144] Lee MS, Lee SO, Kim KR, et al. Sphingosine kinase-1 involves the inhibitory action of HIF-1α by chlorogenic acid in hypoxic DU145 cells[J]. Int J Mol Sci, 2017, 18:325.
[145] Qin Y, Liu HJ, Li M, et al. Salidroside improves the hypoxic tumor microenvironment and reverses the drug resistance of platinum drugs via HIF-1α signaling pathway[J]. EBioMedicine, 2018, 38:25-36.
[146] Chen X, Kou Y, Lu Y, et al. Salidroside ameliorated hypoxia-induced tumorigenesis of BxPC-3 cells via downregulating hypoxia-inducible factor (HIF)-1α and LOXL2[J]. J Cell Biochem, 2020, 121:165-173.
[147] Li Y, Pham V, Bui M, et al. Rhodiola rosea L.:an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention[J]. Curr Pharmacol Rep, 2017, 3:384-395.
[148] Qi YJ, Cui S, Lu DX, et al. Effects of the aqueous extract of a Tibetan herb, Rhodiola algida var. tangutica on proliferation and HIF-1α, HIF-2α expression in MCF-7 cells under hypoxic condition in vitro[J]. Cancer Cell Int, 2015, 15:81.
[149] Su C, Zhang P, Liu J, et al. Erianin inhibits indoleamine 2,3-dioxygenase -induced tumor angiogenesis[J]. Biomed Pharmacother, 2017, 88:521-528.
[150] Xing Y, Mi C, Wang Z, et al. Fraxinellone has anticancer activity in vivo by inhibiting programmed cell death-ligand 1 expression by reducing hypoxia-inducible factor-1α and STAT3[J]. Pharmacol Res, 2018, 135:166-180.
[151] Kim DH, Sung B, Kang YJ, et al. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells[J]. Int J Oncol, 2015, 47:2226-2232.
[152] Li Y, Zhang Y, Liu X, et al. Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1[J]. Int J Oncol, 2018, 52:2119-2129.
[153] Le Y, Zhang X, Li K. Esculetin regulates triple negative breast cancer cell stemness in hypoxia microenvironment through HIF-1α[J]. Chin J New Drugs Clin Rem (中国新药与临床杂志), 2020, 39:558-563.
[154] Sui W, Zhang W, Wu L, et al. Inhibitory mechanism of polypeptide from scorpion venom combined with 5-fluorouacil on angiogenesis of H22 hepatoma[J]. Chin Tradit Herb Drugs (中草药), 2014, 45:392-397.
[155] Ren F, Wu K, Yang Y, et al. Dandelion polysaccharide exerts anti-angiogenesis effect on hepatocellular carcinoma by regulating VEGF/HIF-1α expression[J]. Front Pharmacol, 2020, 11:460.
[156] Zhang Z, Wang R, Huang X, et al. Self-delivered and self-monitored chemo-photodynamic nanoparticles with light-triggered synergistic antitumor therapies by downregulation of HIF-1α and depletion of GSH[J]. ACS Appl Mater Interfaces, 2020, 12:5680-5694.
[157] Wang D, Gao Z, Zhang X. Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling[J]. Med Sci Monit, 2018, 24:8970-8976.
[158] Chuang MT, Ho FM, Wu CC, et al. 15,16-Dihydrotanshinone I, a compound of Salvia miltiorrhiza Bunge, induces apoptosis through inducing endoplasmic reticular stress in human prostate carcinoma cells[J]. Evid Based Complement Alternat Med, 2011, 2011:865435.
[159] Pan Y, Shao D, Zhao Y, et al. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK-HIF-1α[J]. Int J Biol Sci, 2017, 13:794-803.
[160] Wang K, Liu R, Li J, et al. Quercetin induces protective autophagy in gastric cancer cells:involvement of AKT-mTOR-and hypoxia-induced factor 1α-mediated signaling[J]. Autophagy, 2011, 7:966-978.
[161] Riganti C, Doublier S, Viarisio D, et al. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1α and P-glycoprotein overexpression[J]. Br J Pharmacol, 2009, 156:1054-1066.
[162] Li Z, Guo Z, Chu D, et al. Effectively suppressed angiogenesis-mediated retinoblastoma growth usi ng celastrol nanomicelles[J]. Drug Deliv, 2020, 27:358-366.
[163] Sreeja S, Krishnan NCK. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle-berberine complexes in a mouse model[J]. Life Sci, 2018, 195:71-80.
[164] Godugu C, Patel AR, Doddapaneni R, et al. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid[J]. PLoS One, 2014, 9:e89919.
[165] Choi YJ, Heo K, Park HS, et al. The resveratrol analog HS-1793 enhances radiosensitivity of mouse-derived breast cancer cells under hypoxic conditions[J]. Int J Oncol, 2016, 49:1479-1488.
[166] Kim DH, Sung B, Kim JA, et al. HS-1793, a resveratrol analogue, downregulates the expression of hypoxia-induced HIF-1 and VEGF and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model[J]. Int J Oncol, 2017, 51:715-723.
[167] Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages[J]. Am J Pathol, 2000, 157:411-421.
[168] He J, Hu Y, Hu M, et al. The relationship between the preoperative plasma level of HIF-1α and clinic pathological features, prognosis in non-small cell lung cancer[J]. Sci Rep, 2016, 6:20586.
1.李鑫萍, 于渼璇, 况婷瑞, 延玺, 李春颖, 郝海军.黄酮类衍生物抗肿瘤作用研究进展[J]. 药学学报, 2021,56(4): 913-923
2.李玲, 汪哲, 谭宁华*.天然产物靶向肿瘤微环境的研究进展[J]. 药学学报, 2021,56(6): 1580-1590
3.周若宇, 孙曼婷, 刘静, 罗瑛.中药有效成分在抗衰老与抗肿瘤作用机制中的研究进展[J]. 药学学报, 2021,56(7): 1856-1864
4.朱耀萱, 陈伟, 王振中, 乔宏志, 狄留庆.麻杏石甘汤抗菌活性的空间异质性及其物理结构基础[J]. 药学学报, 2021,56(8): 2112-2118
5.陶柱萍, 龙宇, 李灿委, 尹爱武, 范孟然, 厉颖, 刘卫红, 高鹏飞.肠道菌群在中草药抗溃疡性结肠炎中的作用[J]. 药学学报, 2021,56(2): 391-402
6.赵靖, 李原华, 张喜利, 刘文龙, 肖小河.顺铂耐药性机制与中药逆转策略[J]. 药学学报, 2020,55(9): 2043-2052
7.李晓琳, 蒋卫, 樊伟明, 傅小峰, 王璐璐, 蒋建东.肠道微生物群在中药治疗非酒精性脂肪性肝病中的作用[J]. 药学学报, 2020,55(1): 15-24
8.李惠兰, 金一, 毛源婷, 徐国良, 房元英.一氧化氮对肿瘤作用的浓度依赖作用和化疗增敏机制[J]. 药学学报, 2020,55(1): 33-37
9.王庆华, 杜婷婷, 张智慧, 季鸣, 胡海宇, 陈晓光.绿原酸的药理作用及机制研究进展[J]. 药学学报, 2020,55(10): 2273-2280
10.陈振山, 张耀文, 王小明, 田振华, 蒋海强, 齐冬梅.生物钟系统调控机体代谢的分子机制及中药干预研究进展[J]. 药学学报, 2020,55(12): 2818-2826
11.高丽娜, 乔宏志, 胡立宏.强心苷抗肿瘤制剂的研究进展[J]. 药学学报, 2020,55(7): 1528-1539
12.朱十伟, 高晓霞, 田俊生, 秦雪梅, 杜冠华, 周玉枝.中药抗抑郁药对研究进展[J]. 药学学报, 2019,54(2): 235-244
13.张晓平, 邵骏菁, 马大龙, 刘帆, 刘苗苗, 崔清华.天然药物抗肿瘤活性成分及其作用机制研究进展[J]. 药学学报, 2019,54(11): 1949-1957
14.彭彦茜, 杜军, 王红胜.m6A在肿瘤恶性生物学行为中的作用及靶向治疗策略[J]. 药学学报, 2019,54(10): 1771-1782
15.陈风飞, 李欣欣, 孙立, 马晓慧, 袁胜涛.肿瘤微环境及相关靶向药的研究进展[J]. 药学学报, 2018,53(5): 676-683
16.林菁菁, 杨亚军, 沈珑瑛, 潘显道.抗肿瘤药玫瑰树碱及其衍生物的合成和药理研究进展[J]. 药学学报, 2017,52(9): 1387-1396
17.柏兆方, 高源, 左晓彬, 王伽伯, 肖小河.免疫调控与特异质型药物性肝损伤发生机制研究进展[J]. 药学学报, 2017,52(7): 1019-1026
18.徐晶晶, 尚明英, 徐风, 李耀利, 刘广学, 王璇, 蔡少青.临床常用中西药血药浓度的比较与分析[J]. 药学学报, 2017,52(8): 1222-1234
19.张梦梦, 杨玉婷, 余倩雯, 何勤.pH敏感穿膜肽修饰的载α-半乳糖神经酰胺的脂质体免疫作用机制的初步研究[J]. 药学学报, 2017,52(4): 634-640
20.岳庆喜, 虞红, 何婷, 于海清.三氧化二砷和青蒿素抗肿瘤的机制研究进展[J]. 药学学报, 2016,51(2): 208-214
21.孟艳秋, 刘立伟, 刘冬莹, 宋艳玲.Survivin抑制剂研究进展[J]. 药学学报, 2016,51(3): 347-355
22.常亮, 李晨辉, 高健.靶向Her2的肿瘤治疗性抗体研究进展[J]. 药学学报, 2015,50(5): 516-520
23.甄亚钦, 孔德志, 任雷鸣.传统药物对西药药代动力学影响的研究与探索[J]. 药学学报, 2014,49(2): 175-182
24.唐克, 杨瀚泽, 李燕, 田康, 李超, 周琬琪, 牛非, 冯志强, 陈晓光.小分子靶向化合物T03的抗肿瘤作用及机制研究[J]. 药学学报, 2014,49(6): 861-868
25.来芳芳, 刘晓宇, 牛非, 郎立伟, 谢平, 陈晓光.新型HIF-1抑制剂三白脂素-8衍生物LXY6099的抗肿瘤作用[J]. 药学学报, 2014,49(5): 622-626
26.郭佳, 李凤然, 刘洋, 程卯生.碳酸酐酶IX小分子抑制剂的研究进展[J]. 药学学报, 2013,48(11): 1637-1643
27.许文彦 赵思蒙 曾广智 贺文军 徐会敏 谭宁华.一些重要天然活性环肽化学和生物活性研究进展[J]. 药学学报, 2012,47(3): 271-279
28.尚 海 潘 莉 杨 澍 陈 虹 程卯生.微管蛋白抑制剂的研究进展[J]. 药学学报, 2010,45(9): 1078-1088
29.柳乃方 屈凌波 相秉仁 杨 冉.青蒿素类化合物抗肿瘤机制研究— 青蒿素类化合物/转铁蛋白对接研究[J]. 药学学报, 2009,44(2): 140-144
30.王敬俭;李静;耿美玉.靶向缺氧诱导因子-1的抗肿瘤药物研究进展[J]. 药学学报, 2008,43(6): 565-569
31.柏兆方, 高源, 左晓彬, 王伽伯, 肖小河.免疫调控与特异质型药物性肝损伤发生机制研究进展[J]. 药学学报,