药学学报, 2021, 56(10): 2742-2760
杨悦, 李得峰*, 罗婷, 史浩良, 张永强*. 那可丁结构改造与抗肿瘤活性研究进展[J]. 药学学报, 2021, 56(10): 2742-2760.
YANG Yue, LI De-feng*, LUO Ting, SHI Hao-liang, ZHANG Yong-qiang*. Structural modification and anti-cancer activity of noscapine[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2742-2760.

杨悦, 李得峰*, 罗婷, 史浩良, 张永强*
华东理工大学药学院, 上海 200237
关键词:    那可丁      结构改造      抗肿瘤      研究进展     
Structural modification and anti-cancer activity of noscapine
YANG Yue, LI De-feng*, LUO Ting, SHI Hao-liang, ZHANG Yong-qiang*
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
The structural modification of natural product represents a powerful tool for anti-cancer drug discovery. Noscapine, as a phthalideisoquinoline alkaloid from opium, has been used as an over-the-counter antitussive drug with excellent oral bioavailability and low toxicity. Recently, the potential of this compound as a particularly attractive lead for anti-cancer drug discovery has been demonstrated. Multiple mechanisms, especially the interference of tubulin polymerization, might be involved. Thereafter, various structural modifications based on semisynthetic routes, which aims to improve the anti-cancer activity and pharmacokinetic properties, as well as to probe the mechanism, has been performed. Several analogues are emerging as possible candidates as novel anticancer therapies. This perspective mainly discusses the advancing noscapine and related analogues in the fight against malignant disease in recent years. Furthermore, the future directions of this evolving field were also preliminary prospected.
Key words:    noscapine    structural modification    anticancer    research progress   
收稿日期: 2021-03-04
DOI: 10.16438/j.0513-4870.2021-0303
基金项目: 国家自然科学基金面上项目(21871086).
通讯作者: 李得峰,Tel:15216732283,E-mail:intelligentbee@sina.com;张永强,Tel:15900685803,E-mail:yongqiangzhang@ecust.edu.cn
Email: intelligentbee@sina.com;yongqiangzhang@ecust.edu.cn
PDF(1682KB) Free
杨悦  在本刊中的所有文章
李得峰*  在本刊中的所有文章
罗婷  在本刊中的所有文章
史浩良  在本刊中的所有文章
张永强*  在本刊中的所有文章

[1] Vree TB, Rt VD, Koopmankimenai PM. Codeine analgesia is due to codeine-6-glucuronide, not morphine[J]. Int J Clin Pract, 2000, 54:395-398.
[2] Aneja R, Dhiman N, Idnani J, et al. Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent[J]. Cancer Chemother Pharmacol, 2007, 60:831-839.
[3] Mahmoudian M, Rahimi-Moghaddam P. The anti-cancer activity of noscapine:a review[J]. Recent Pat Anticancer Drug Discov, 2009, 4:92-97.
[4] Landen JW, Lang R, McMahon SJ, et al. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma[J]. Cancer Res, 2002, 62:4109-4114.
[5] Zhou J, Gupta K, Aggarwal S, et al. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation[J]. Mol Pharmacol, 2003, 63:799-807.
[6] Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell, 2000, 103:239-252.
[7] Zhou J, Gupta K, Yao J, et al. Paclitaxel-resistant human ovarian cancer cells undergo c-Jun NH2-terminal kinase-mediated apoptosis in response to noscapine[J]. J Biol Chem, 2002, 277:39777-39785.
[8] Semenza GL. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer, 2003, 3:721-732.
[9] Zagzag D. Noscapine inhibits hypoxia-mediated HIF-1α expression andangiogenesis in vitro:a novel function for an old drug[J]. Int J Oncol, 2006, 28:1121-1130.
[10] Heidari N, Goliaei B, Moghaddam PR, et al. Apoptotic pathway induced by noscapine in human myelogenous leukemic cells[J]. Anticancer Drugs, 2007, 18:1139-1147.
[11] Jackson T, Chougule MB, Ichite N, et al. Antitumor activity of noscapine in human non-small cell lung cancer xenograft model[J]. Cancer Chemother Pharmacol, 2008, 63:117-126.
[12] Aneja R, Ghaleb AM, Zhou J, et al. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells[J]. Cancer Res, 2007, 67:3862-3870.
[13] Aggarwal BB. Nuclear factor-κB:the enemy within[J]. Cancer Cell, 6:203-208.
[14] Aggarwal BB. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NF-κB signaling pathway[J]. Cancer Res, 2010, 70:3259-3268.
[15] Kolb EA, Gorlick R, Houghton PJ, et al. Initial testing of dasatinib by the pediatric preclinical testing program[J]. Pediatr Blood Cancer, 2008, 50:1198-1206.
[16] He M, Jiang L, Ren Z, et al. Noscapine targets EGFR(p-Tyr1068) to suppress the proliferation and invasion of MG63 cells[J]. Sci Rep, 2016, 6:37062.
[17] Aneja R, Vangapandu SN, Lopus M, et al. Synthesis of microtubule-interfering halogenated noscapine analogs that perturb mitosis in cancer cells followed by cell death[J]. Biochem Pharmacol, 2006, 72:415-426.
[18] Verma AK, Bansal S, Singh J, et al. Synthesis and in vitro cytotoxicity of haloderivatives of noscapine[J]. Bioorg Med Chem, 2006, 14:6733-6736.
[19] Aneja R, Vangapandu SN, Joshi HC. Synthesis and biological evaluation of a cyclic ether fluorinated noscapine analog[J]. Bioorg Med Chem, 2006, 14:8352-8358.
[20] Aneja R, Vangapandu SN, Lopus M, et al. Development of a novel nitro-derivative of noscapine for the potential treatment of drug-resistant ovarian cancer and T-cell lymphoma[J]. Mol Pharmacol, 2006, 69:1801-1809.
[21] Naik PK, Chatterji BP, Vangapandu SN, et al. Rational design, synthesis and biological evaluations of amino-noscapine:a high affinity tubulin-binding noscapinoid[J]. J Comput Aided Mol Des, 2011, 25:443-454.
[22] Manchukonda NK, Sridhar B, Naik PK, et al. Copper(I) mediated facile synthesis of potent tubulin polymerization inhibitor, 9-amino-α-noscapine from natural α-noscapine[J]. Bioorg Med Chem Lett, 2012, 22:2983-2987.
[23] Henary M, Narayana L, Ahad S, et al. Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity[J]. Biochem Pharmacol, 2014, 92:192-205.
[24] Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications[J]. Cancer, 1994, 73:2432-2443.
[25] Parker N, Turk MJ, Westrick E, et al. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay[J]. Anal Biochem, 2005, 338:284-293.
[26] Naik PK, Lopus M, Aneja R, et al. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug:folate conjugated noscapine (Targetin)[J]. J Comput Aided Mol Des, 2012, 26:233-247.
[27] Porcù E, Sipos A, Basso G, et al. Novel 9'-substituted-noscapines:synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation[J]. Eur J Med Chem, 2014, 84:476-490.
[28] Manchukonda NK, Naik PK, Sridhar B, et al. Synthesis and biological evaluation of novel biaryl type α-noscapine congeners[J]. Bioorg Med Chem Lett, 2014, 24:5752-5757.
[29] Santoshi S, Naik PK, Joshi HC. Rational design of novel anti-microtubule agent (9-azido-noscapine) from quantitative structure activity relationship (QSAR) evaluation of noscapinoids[J]. J Biomol Screen, 2011, 16:1047-1058.
[30] DeBono A, Capuano B, Scammells PJ. Progress toward the development of noscapine and derivatives as anticancer agents[J]. J Med Chem, 2015, 58:5699-5727.
[31] Manchukonda NK, Nagireddy PKR, Sridhar B, et al. Synthesis and click reaction of tubulin polymerization inhibitor 9-azido-α-noscapine[J]. Res Chem Intermed, 2017, 43:2457-2469.
[32] Lehmann J, Wright MH, Sieber SA. Making a long journey short:alkyne functionalization of natural product scaffolds[J]. Chemistry (Easton), 2016, 22:4666-4678.
[33] Reddy Nagireddy PK, Kommalapati VK, Manchukonda NK, et al. Synthesis and antiproliferative activity of 9-formyl and 9-ethynyl noscapines[J]. ChemistrySelect, 2019, 4:4092-4096.
[34] Liang X, Gopalaswamy R, Navas F, et al. A scalable synthesis of the difluoromethyl-allo-threonyl hydroxamate-based LpxC inhibitor LPC-058[J]. J Org Chem, 2016, 81:4393-4398.
[35] Nagireddy PKR, Sridhar B, Kantevari S. Copper-catalyzed Glaser-Hey-Type cross coupling of 9-ethynyl-α-noscapine leading to unsymmetrical 1,3-diynyl noscapinoids[J]. Asian J Org Chem, 2019, 8:1495-1500.
[36] Anderson JT, Ting AE, Boozer S, et al. Discovery of S-phase arresting agents derived from noscapine[J]. J Med Chem, 2005, 48:2756-2758.
[37] Anderson JT, Ting AE, Boozer S, et al. Identification of novel and improved antimitotic agents derived from noscapine[J]. J Med Chem, 2005, 48:7096-7098.
[38] Zim D, Buchwald SL. An air and thermally stable one-component catalyst for the amination of aryl chlorides[J]. Org Lett, 2003, 5:2413-2415.
[39] Schmidhammer H, Klötzer W. Neue Reaktionen an Phthalidisochinolinalkaloiden. Alkoxytauschreaktionen and isomerisierungen an α-and β-narcotin[J]. Arch Pharm, 1978, 311:664-671.
[40] Marshall M, Pyman F, Robinson R. Stereoisomerides of narcotine and hydrastin[J]. J Chem Soc, 1934, 1315-1320.
[41] Bennani YL, Gu W, Canales A, et al. Tubulin binding, protein-bound conformation in solution, and antimitotic cellular profiling of noscapine and its derivatives[J]. J Med Chem, 2012, 55:1920-1925.
[42] Mishra RC, Karna P, Gundala SR, et al. Second generation benzofuranone ring substituted noscapine analogs:synthesis and biological evaluation[J]. Biochem Pharmacol, 2011, 82:110-121.
[43] Mishra RC, Gundala SR, Karna P, et al. Design, synthesis and biological evaluation of di-substituted noscapine analogs as potent and microtubule-targeted anticancer agents[J]. Bioorg Med Chem Lett, 2015, 25:2133-2140.
[44] Mishra KB, Mishra RC, Tiwari VK. First noscapine glycoconjugates inspired by click chemistry[J]. RSC Adv, 2015, 5:51779-51789.
[45] Aggarwal S, Ghosh NN, Aneja R, et al. A convenient synthesis of aryl-substituted N-carbamoyl/N-thiocarbamoyl narcotine and related compounds[J]. Helv Chim Acta, 2002, 85:2458-2462.
[46] DeBono AJ, Xie JH, Ventura S, et al. Synthesis and biological evaluation of N-substituted noscapine analogues[J]. ChemMedChem, 2012, 7:2122-2133.
[47] Kalgutkar AS, Jones R, Sawant A. Chapter 5:sulfonamide as an essential functional group in drug design[J]. RSC Drug Discov, 2010, 1:210-274.
[48] Yong C, Devine SM, Gao XX, et al. A novel class of N-sulfonyl and N-sulfamoyl noscapine derivatives that promote mitotic arrest in cancer cells[J]. ChemMedChem, 2019, 14:1968-1981.
[49] McCamley K, Ripper JA, Singer RD, et al. Efficient N-demethylation of opiate alkaloids using a modified nonclassical Polonovski reaction[J]. J Org Chem, 2003, 68:9847-9850.
[50] Manchukonda NK, Naik PK, Santoshi S, et al. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents[J]. PLoS One, 2013, 8:e77970.
[51] Fascio ML, Errea MI, D'Accorso NB. Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological properties[J]. Eur J Med Chem, 2015, 90:666-683.
[52] Bin Sayeed I, Garikapati KR, Makani VKK, et al. Development and biological evaluation of imidazothiazole propenones as tubulin inhibitors that effectively triggered apoptotic cell death in alveolar lung cancer cell line[J]. ChemistrySelect, 2017, 2:6480-6487.
[53] Andreani A, Granaiola M, Leoni A, et al. Imidazo[2,1-b]thiazole guanylhydrazones as RSK2 inhibitors[J]. Eur J Med Chem, 2011, 46:4311-4323.
[54] Nagireddy PKR, Kommalapati VK, Siva Krishna V, et al. Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives as anticancer agents[J]. ACS Omega, 2019, 4:19382-19398.
[55] Winzer T, Gazda V, He Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336:1704-1708.
1.孟艳秋, 刘立伟, 刘冬莹, 宋艳玲.Survivin抑制剂研究进展[J]. 药学学报, 2016,51(3): 347-355
2.芦臣书 唐 克 李 燕 金 波 尹大力 马 辰 陈晓光 黄海洪.新型苄基脲类索拉非尼类似物的合成和体外抗肿瘤活性研究[J]. 药学学报, 2013,48(5): 709-717
3.姚建文, 孙 伟, 陈 静, 徐文方.多靶点抗肿瘤药物索拉非尼结构改造的研究进展[J]. 药学学报, 2012,47(9): 1111-1119
4.张建业;符立梧.几类重要的海洋抗肿瘤药物研究进展[J]. 药学学报, 2008,43(5): 435-442