药学学报, 2021, 56(10): 2769-2778
引用本文:
武丹, 陈聪, 刘长灏, 温鸿亮. 以甘露糖受体为靶点肿瘤显像剂的研究进展[J]. 药学学报, 2021, 56(10): 2769-2778.
WU Dan, CHEN Cong, LIU Chang-hao, WEN Hong-liang. Research progress of tumor imaging agents targeting mannose receptor[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2769-2778.

以甘露糖受体为靶点肿瘤显像剂的研究进展
武丹1,2, 陈聪3, 刘长灏1,2, 温鸿亮1,2*
1. 北京理工大学化学与化工学院, 北京 102488;
2. 医药分子科学与制剂工程工信部重点实验室, 北京 102488;
3. 沈阳药科大学制药工程学院, 辽宁 本溪 117000
摘要:
癌症是一种恶性疾病,严重威胁着人类的健康。早期诊断在癌症的治疗中具有十分重要的意义,因此肿瘤显像剂一直是国内外研究的热点。甘露糖受体是C型凝集素受体,表达于多种肿瘤组织和前哨淋巴结中,已成为一种重要的肿瘤标志物。近年来以甘露糖受体为靶点设计开发了多种靶向显像剂并且取得了一定进展,本文综述了这方面的研究进展。
关键词:    肿瘤      甘露糖受体      靶向      显像剂      诊断     
Research progress of tumor imaging agents targeting mannose receptor
WU Dan1,2, CHEN Cong3, LIU Chang-hao1,2, WEN Hong-liang1,2*
1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China;
2. Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing 102488, China;
3. School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117000, China
Abstract:
Cancer is a malignant disease threatening human health and life. Early diagnosis of carcinoma plays an important role in the treatment of carcinoma, so tumor imaging agents have been the focus of research in this field. Mannose receptor is a C-type lectin receptor, which expressed in various tumor tissues, sentinel lymph nodes and has become an important tumor marker. In recent years, a variety of imaging agents targeting mannose receptors have been designed and developed. This review summarizes the representative achievements.
Key words:    tumor    mannose receptor    targeting    imaging agent    diagnosis   
收稿日期: 2021-03-18
DOI: 10.16438/j.0513-4870.2021-0386
通讯作者: 温鸿亮,Tel:18612672686,E-mail:wen.hongliang@bit.edu.cn
Email: wen.hongliang@bit.edu.cn
相关功能
PDF(679KB) Free
打印本文
0
作者相关文章
武丹  在本刊中的所有文章
陈聪  在本刊中的所有文章
刘长灏  在本刊中的所有文章
温鸿亮  在本刊中的所有文章

参考文献:
[1] Wu CC, Li MN, Meng HB, et al. Analysis of status and countermeasures of cancer incidence and mortality in China[J]. Sci China Life Sci, 2019, 62:640-647.
[2] Zhang JJ, Zhang WC, Li XM, et al. Research progress in the new specific receptor-targeted sentinel lymph node agents[J]. Int J Radiat Med Nucl Med (国际放射医学核医学杂志), 2018, 42:69-73.
[3] Guo QJ, Jin ZC, Yuan Y, et al. New mechanisms of tumor-associated macrophages on promoting tumor progression:recent research advances and potential targets for tumor immunotherapy[J]. J Immunol Res, 2016, 2016:9720912(1-12).
[4] Wang WQ, Zhang ZH, Zhou JP, et al. An overview of glycoconjugates for cancer targeting therapy and diagnosis[J]. Acta Pharm Sin (药学学报), 2013, 48:1763-1770.
[5] Qiu SQ, Waaijer SJH, Zwager MC, et al. Tumor-associated macrophages in breast cancer:Innocent bystander or important player?[J]. Cancer Treat Rev, 2018, 70:178-189.
[6] Irache JM, Salman HH, Gamazo C, et al. Mannose-targeted systems for the delivery of therapeutics[J]. Expert Opin Drug Deliv, 2008, 5:703-724.
[7] Stahl PD, Ezekowitz RAB. The mannose receptor is a pattern recognition receptor involved in host defense[J]. Curr Opin Immunol, 1998, 10:50-55.
[8] Napper CE, Drickamer K, Taylor ME. Collagen binding by the mannose receptor mediated through the fibronectin type II domain[J]. Biochem J, 2006, 395:579-586.
[9] Liu XL, Zeng LB. A review of the research advancement of structure, function, expression and application of mannose receptor[J]. Chin J Fish (水产学杂志), 2013, 26:54-59.
[10] Martinez-Pomares L. The mannose receptor[J]. J Leukoc Biol, 2012, 92:1177-1186.
[11] Lü Q, Yin SP, Wang Q, et al. Infiltration of CD68 positive and CD206 positive macrophages in breast cancer tissue and their relation to prognosis[J]. Chin J Clin Exp Pathol (临床与实验病理学杂志), 2016, 32:252-257.
[12] Fan WM, Yang X, Huang F, et al. Identification of CD206 as a potential biomarker of cancer stem-like cells and therapeutic agent in liver cancer[J]. Oncol Lett, 2019, 18:3218-3226.
[13] Ding DB, Yao Y, Yang CM, et al. Identification of mannose receptor and CD163 as novel biomarkers for colorectal cancer[J]. Cancer Biomarkers, 2018, 21:689-700.
[14] Liu DR, Guan QL, Gao MT, et al. Mannose receptor as a potential biomarker for gastric cancer:a pilot study[J]. Int J Biol Markers, 2017, 32:E278-E283.
[15] Shao JF, Xu ZQ, Hou JQ, et al. Characteristics of CDl63+/CD206+ monocyte-macrophages in tumor microenvironment in patients with bladder cancer[J]. Chin J Exp Surg (中华实验外科杂志), 2017, 34:1628-1630.
[16] Andersen MN, Andersen NF, Rodgaard-Hansen S, et al. The novel biomarker of alternative macrophage activation, soluble mannose receptor (sMR/sCD206):implications in multiple myeloma[J]. Leuk Res, 2015, 39:971-975.
[17] Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma[J]. Blood, 2015, 125:3049-3058.
[18] Meng J, Gao YH, Xu HX, et al. Expressions of Toll like receptor 4 and CD163 CD206 in diffuse large B-cell lymphoma and their clinical significance[J]. Chin J Cancer Prev Treat (中华肿瘤防治杂志), 2019, 26:1180-1186.
[19] Salmi M, Karikoski M, Elima K, et al. CD44 binds to macrophage mannose receptor on lymphatic endothelium and supports lymphocyte migration via afferent lymphatics[J]. Circ Res, 2013, 12:1577-1582.
[20] Irjala H, Johansson EL, Grenman R, et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium[J]. J Exp Med, 2001, 194:1033-1041.
[21] Vera DR, Wallace AM, Hoh CK, et al. A synthetic macromolecule for sentinel node detection:99mTc-DTPA-mannosyl-dextran[J]. J Nucl Med, 2001, 42:951-959.
[22] Morton DL, Chan AD. The concept of sentinel node localization:how it started[J]. Semin Nucl Med, 2000, 30:4-10.
[23] Morais M, Subramanian S, Pandey U, et al. Mannosylated dextran derivatives labeled with fac-[M(CO)3]+ (M=99mTc, Re) for specific targeting of sentinel lymph node[J]. Mol Pharm, 2011, 8:609-620.
[24] Jiang C, Cai HW, Peng XD, et al. Targeted imaging of tumor-associated macrophages by cyanine 7-labeled mannose in xenograft tumors[J]. Mol Imaging, 2017, 16:1-10.
[25] Yang Y, Jia TW, Xu F, et al. Fluorescent neomannosyl bovine serum albumin as efficient probe for mannose receptor imaging and MCF-7 cancer cell targeting[J]. ACS Appl Nano Mater, 2018, 1:1058-1065.
[26] Wang KR, An HW, Rong RX, et al. Fluorescence turn-on sensing of protein based on mannose functionalized perylene bisimides and its fluorescence imaging[J]. Biosens Bioelectron, 2014, 58:27-32.
[27] Jayasree A, Sasidharan S, Koyakutty M, et al. Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging[J]. Carbohydr Polym, 2011, 85:37-43.
[28] Huang DH, Qi XY, Ge YR, et al. Application of magnetic iron oxide nanoparticles in magnetic resonance/photothermal dual-modal imaging[J]. Acta Pharm Sin (药学学报), 2017, 52:481-487.
[29] Zhi DF, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy[J]. Acta Biomater, 2020, 102:13-34.
[30] Hsu FT, Sun R, Hsieh CL. Cellular magnetic resonance imaging with superparamagnetic iron oxide:methods and applications in cancer[J]. Spin, 2019, 9:1-10.
[31] Yoo MK, Park IY, Kim IY, et al. Superparamagnetic iron oxide nanoparticles coated with mannan for macrophage targeting[J]. J Nanosci Nanotechnol, 2008, 8:5196-5202.
[32] Vu-Quang H, Yoo MK, Cho CS, et al. Immune cells-specific delivery of mannan-coated superparamagnetic iron oxide nanoparticles for the detection of metastatic lymph node[C].Hung Hom:2010 IEEE International conference on nano/molecular medicine and engineering, 2010:158-163.
[33] Vu-Quang H, Muthiah M, Kim YK, et al. Carboxylic mannan-coated iron oxide nanoparticles targeted to immune cells for lymph node-specific MRI in vivo[J]. Carbohydr Polym, 2012, 88:780-788.
[34] Muthiah M, Vu-Quang H, Kim YK, et al. Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node[J]. Carbohydr Polym, 2013, 92:1586-1595.
[35] Tang GH. Positron emission tomography imaging and drug development[J]. Acta Pharm Sin (药学学报), 2001, 36:470-474.
[36] Jeong JM, Hong MK, Kim YJ, et al. Development of 99mTc-neomannosyl human serum albumin (99mTc-MSA) as a novel receptor binding agent for sentinel lymph node imaging[J]. Nucl Med Commun, 2004, 25:1211-1217.
[37] Kim HK, Kim S, Sung HK, et al. Comparison between preoperative versus intraoperative injection of technetium-99m neomannosyl human serum albumin for sentinel lymph node identification in early stage lung cancer[J]. Ann Surg Oncol, 2012, 19:1343-1349.
[38] Kim S, Kim HK, Kang DY, et al. Intra-operative sentinel lymph node identification using a novel receptor-binding agent (technetium-99m neomannosyl human serum albumin, 99mTc-MSA) in stage I non-small cell lung cancer[J]. Eur J Cardio Thorac, 2010, 37:1450-1456.
[39] Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems:implications for design and use of multivalent ligands and inhibitors[J]. Angew Chem Int Ed, 1998, 37:2754-2794.
[40] Ocampo-Garcia BE, Ramirez FM, Ferro-Flores G, et al. 99mTc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection[J]. Nucl Med Biol, 2011, 38:1-11.
[41] Locke LW, Mayo MW, Yoo AD, et al. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes[J]. Biomaterials, 2012, 33:7785-7793.
[42] Vera DR, Wallace AM, Hoh CK.[99mTc]MAG3-mannosyl-dextran:a receptor-binding radiopharmaceutical for sentinel node detection[J]. Nucl Med Biol, 2001, 28:493-498.
[43] Wallace AM, Hoh CK, Ellner SJ, et al. Lymphoseek:a molecular imaging agent for melanoma sentinel lymph node mapping[J]. Ann Surg Oncol, 2007, 14:913-921.
[44] Leong SPL, Kim J, Ross M, et al. A phase 2 study of 99mTc-tilmanocept in the detection of sentinel lymph nodes in melanoma and breast cancer[J]. Ann Surg Oncol, 2011, 18:961-969.
[45] Sondak VK, King DW, Zager JS, et al. Combined analysis of phase III trials evaluating[99mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma[J]. Ann Surg Oncol, 2013, 20:680-688.
[46] Wallace AM, Han LK, Povoski SP, et al. Comparative evaluation of[99mTc]tilmanocept for sentinel lymph node mapping in breast cancer patients:results of two phase 3 trials[J]. Ann Surg Oncol, 2013, 20:2590-2599.
[47] Pirmettis I, Arano Y, Tsotakos T, et al. New 99mTc(CO)3 mannosylated dextran bearing S-derivatized cysteine chelator for sentinel lymph node detection[J]. Mol Pharm, 2012, 9:1681-1692.
[48] Subramanian S, Pandey U, Papadopoulos M, et al. Studies toward the biological efficacy of 99mTc-labeled dextran-cysteine-mannose ([99mTc(CO)3]DCM20) for sentinel lymph node detection[J]. Cancer Biother Radiopharm, 2012, 27:365-370.
[49] Giglio J, Fernandez S, Jentschel C, et al. Design and development of 99mTc-‘4+1’-labeled dextran-mannose derivatives as potential radiopharmaceuticals for sentinel lymph node detection[J]. Cancer Biother Radiopharm, 2013, 28:541-551.
[50] Pothayee N, Balasubramaniam S, Pothayee N, et al. Magnetic nanoclusters with hydrophilic spacing for dual drug delivery and sensitive magnetic resonance imaging[J]. J Mater Chem B, 2013, 1:1142-1149.
[51] Joris F, Valdeperez D, Pelaz B, et al. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells[J]. J Nanobiotechnol, 2016, 14:69.
[52] Yamaguchi A, Hanaoka H, Pirmettis I, et al. Injection site radioactivity of 99mTc-labeled mannosylated dextran for sentinel lymph node mapping[J]. Mol Pharm, 2015, 12:514-519.
相关文献:
1.赖晓雪, 王硕, 闫鑫杨, 刘欣荣, 宋艳志, 邓意辉*.基于血小板的肿瘤靶向治疗策略与反思[J]. 药学学报, 2021,56(4): 1025-1034
2.徐焦, 蒙凌华, 卿晨.传统抗肿瘤药物的临床应用现状与发展[J]. 药学学报, 2021,56(6): 1551-1561
3.李歆, 王义俊, 刘平羽.特异靶向KRAS-G12C突变的抗肿瘤药物研究进展[J]. 药学学报, 2021,56(2): 374-382
4.杨雨琦, 巩飞, 柏上, 程亮.肿瘤微环境响应型纳米诊疗制剂的研究进展[J]. 药学学报, 2021,56(2): 465-475
5.邓绮虹, 王峥, 邓贤明, 李莉.靶向STAT蛋白的抑制剂在淋巴瘤治疗中的研究进展[J]. 药学学报, 2021,56(3): 703-710
6.万方劼, 陈斌龙, 杨林洁, 殷晴晴, 鄢月, 杨晔, 张强, 汪贻广.主动包载维替泊芬阳离子脂质体用于新生血管和肿瘤靶向光动力治疗[J]. 药学学报, 2020,55(7): 1680-1690
7.张旭, 蒙凌华.源于天然产物或其衍生物的分子靶向抗肿瘤药物研究进展[J]. 药学学报, 2020,55(11): 2491-2500
8.周晓菲, 李睿, 姚红娟, 李亮.ACK1小分子抑制剂的研究进展[J]. 药学学报, 2020,55(5): 821-831
9.张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟.外泌体作为药物递送载体的研究进展[J]. 药学学报, 2019,54(6): 1010-1016
10.刘玉萍, 傅荣萍, 陈彦, 屠书梅.大蒜素二烯丙基三硫醚-外泌体抗小鼠黑色素瘤肺转移的作用[J]. 药学学报, 2019,54(9): 1688-1694
11.彭彦茜, 杜军, 王红胜.m6A在肿瘤恶性生物学行为中的作用及靶向治疗策略[J]. 药学学报, 2019,54(10): 1771-1782
12.陈风飞, 李欣欣, 孙立, 马晓慧, 袁胜涛.肿瘤微环境及相关靶向药的研究进展[J]. 药学学报, 2018,53(5): 676-683
13.刘薇, 陈丽青, 辛欣, 黄伟, 高钟镐.抗肿瘤抗生素药物制剂的研究进展[J]. 药学学报, 2018,53(6): 865-877
14.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099
15.周丹丹, 余娇娇, 花芳, 胡卓伟.巨噬细胞迁移抑制因子,连接炎症和肿瘤的关键蛋白[J]. 药学学报, 2018,53(11): 1761-1769
16.刘爱赟, 侯晓双, 丁娅.基于线粒体靶向机制的抗肿瘤制剂的研究进展[J]. 药学学报, 2017,52(6): 879-887
17.段迎超, 翟晓雨, 秦文平, 关圆圆.基于PROTACs策略的抗肿瘤药物研究进展[J]. 药学学报, 2017,52(12): 1801-1810
18.李曼, 杨玉婷, 何勤, 张志荣.纳米载体在肿瘤免疫治疗中的研究进展[J]. 药学学报, 2017,52(12): 1839-1848
19.蒋家豪, 孙福谋, 韩月, 王阳, 蔡佳玲, 王旻, 张娟.噬菌体展示全人源抗GPC3的单链抗体的筛选及鉴定[J]. 药学学报, 2017,52(12): 1877-1883
20.罗林明, 楚世峰, 姜懿纳, 罗飘, 陈乃宏.神经干细胞治疗胶质瘤的研究进展[J]. 药学学报, 2017,52(4): 510-516
21.王钰洁, 曹鑫, 刘小宇, 卢小玲, 李玉艳, 焦炳华.抗体偶联药物设计及临床研究进展[J]. 药学学报, 2016,51(8): 1209-1216
22.杨怡君, 丁劲松.硝基咪唑类在肿瘤乏氧显像剂中的作用和研究进展[J]. 药学学报, 2016,51(8): 1227-1232
23.马银云, 李莉, 黄海凤, 缑三虎, 倪京满.肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016,51(5): 717-724
24.陈思亲, 桂心蕊, 袁丽晶, 张宁, 陈研.基于脂质体的新型肿瘤成像荧光探针的构建及初步评价[J]. 药学学报, 2016,51(5): 806-812
25.李聪, 许焕丽, 刘明, 林秀坤.诱导细胞凋亡的海洋抗肿瘤药物研究进展[J]. 药学学报, 2016,51(9): 1394-1400
26.马赫遥, 何苗, 魏敏杰.调控肿瘤干细胞干性的靶向作用与相关机制的研究进展[J]. 药学学报, 2016,51(2): 189-196
27.何琪杨.肿瘤异质性与抗肿瘤靶向药物的耐药性[J]. 药学学报, 2016,51(2): 197-201
28.韩旻, 李畅, 郭望葳, 刘惠娜, 梁文权, 高建青.线粒体靶向药物输送抗肿瘤的研究进展[J]. 药学学报, 2016,51(2): 257-263
29.邓春月, 龙莹莹, 刘厦, 陈章宝, 李翀.生物素介导的胰腺癌靶向聚合物胶束制备及其用于光动力治疗的初步研究[J]. 药学学报, 2015,50(8): 1038-1044
30.胡宏祥, 王学清, 张华, 张强.分子靶向抗肿瘤药物的作用机制及临床研究进展[J]. 药学学报, 2015,50(10): 1232-1239
31.李伟男, 徐琪, 王艳宏, 陈大为.聚(β-氨基酯)肿瘤靶向给药系统的研究进展[J]. 药学学报, 2015,50(4): 434-439
32.张利, 魏刚, 陆伟跃.可活化细胞穿膜肽在肿瘤治疗领域的应用[J]. 药学学报, 2014,49(12): 1639-1643
33.赵 波, 范俣辰, 王学清, 代文兵, 张 强, 王杏林.iRGD修饰的阿霉素主动靶向脂质体的细胞毒与抗肿瘤效果评价[J]. 药学学报, 2013,48(3): 417-422
34.乔明曦, 张晓君, 巴 爽, 胡海洋, 赵秀丽, 陈大为.肿瘤干细胞靶向给药系统的研究进展[J]. 药学学报, 2013,48(4): 477-483
35.张添源, 胡瑜兰, 梁文权, 高建青.基因重组间充质干细胞作为肿瘤靶向细胞载体的研究进展[J]. 药学学报, 2013,48(8): 1209-1220
36.邱立朋, 龙苗苗, 陈大为.透明质酸肿瘤靶向给药系统的研究进展[J]. 药学学报, 2013,48(9): 1376-1382
37.周雅梅,吴学萍,曾理,张雅溶,潘黎军,王 驰 .肽修饰的甲氨蝶呤体外抗肿瘤作用初步研究[J]. 药学学报, 2012,47(4): 452-458
38.涂柳晓,徐月红,汤晨懿,邓礼荷,吴传斌.RGD环肽介导的靶向脂质体体内药动学及荷瘤动物活体成像研究[J]. 药学学报, 2012,47(5): 646-651
39.黄榕彬, 唐国涛.酸敏释药胶束肿瘤靶向给药系统的研究进展[J]. 药学学报, 2012,47(4): 440-445
40.汤 沁, 丁 倩, 林 莉, 张珍珍, 代 争, 詹金彪.针对HER2靶点的抗体药物研究与肿瘤靶向治疗[J]. 药学学报, 2012,47(10): 1297-1305
41.陈 军.抗肿瘤热敏靶向脂质体的研究进展[J]. 药学学报, 2011,46(5): 502-506
42.赵 杰 曹胜利 郑晓霖 赵 波.叶酸受体介导的抗肿瘤药物研究进展[J]. 药学学报, 2009,44(2): 109-114
43.刘洋 张振中 李坤 梅芊.载反义寡核苷酸阳离子脂质体的制备及体内外研究[J]. 药学学报, 2009,44(11): 1273-1277
44.赵惟;马会利;齐宪荣.靶向肿瘤新生血管的阿霉素阳离子脂质体的体外研究[J]. 药学学报, 2007,42(9): 982-988
45.辛胜昌1;2;吴新荣1;2;周丽珍2.紫杉醇磁性脂质体纳米粒的制备[J]. 药学学报, 2006,41(10): 933-938
46.张奇;项光亚;龙娜;林佳亮;曾凡波.叶酸靶向的PGA联合N-苯乙酰化阿霉素的抗肿瘤活性[J]. 药学学报, 2005,40(11): 1046-1050
47.王维刚;甄永苏.以抗体为基础的肿瘤靶向治疗和基因治疗[J]. 药学学报, 1999,34(10): 795-800