药学学报, 2021, 56(10): 2787-2796
引用本文:
白雪, 刘贵琴, 杨建鑫, 段雅彬, 朱俊博, 李向阳. 肠道菌群介导高原低氧对药物代谢的调节[J]. 药学学报, 2021, 56(10): 2787-2796.
BAI Xue, LIU Gui-qin, YANG Jian-xin, DUAN Ya-bin, ZHU Jun-bo, LI Xiang-yang. The effect of high-altitude hypoxia on drug metabolism is mediated by gut microbiota[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2787-2796.

肠道菌群介导高原低氧对药物代谢的调节
白雪1, 刘贵琴1, 杨建鑫1, 段雅彬1, 朱俊博1, 李向阳1,2*
1. 青海大学高原医学研究中心, 青海 西宁 810001;
2. 青海大学三江源生态与高原农牧业国家重点实验室, 青海 西宁 810016
摘要:
高原低氧显著影响药物代谢动力学特征及药物代谢酶和转运体的活性和表达。肠道菌群是影响药物体内代谢的重要因素,可通过直接或间接作用影响药物代谢,改变药物的生物利用度、生物活性或毒性,进一步影响药物的疗效和安全性。高原低氧环境中肠道菌群的结构和多样性发生显著改变,在高原低氧条件下药物代谢的调节中可能发挥关键作用。本文旨在综述高原低氧对肠道菌群的影响及肠道菌群对药物代谢的影响,探讨肠道菌群介导的高原低氧对药物代谢的调节作用及相关机制。
关键词:    高原低氧      药物代谢      肠道菌群      CYP450     
The effect of high-altitude hypoxia on drug metabolism is mediated by gut microbiota
BAI Xue1, LIU Gui-qin1, YANG Jian-xin1, DUAN Ya-bin1, ZHU Jun-bo1, LI Xiang-yang1,2*
1. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China;
2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
Abstract:
The activity and expression of drug metabolizing enzymes and transporters changes significantly under high altitude hypoxia. The gut microbiota is an important factor affecting the metabolism of drugs through direct and indirect actions, changing the bioavailability, biological activity or toxicity of drugs and affecting the efficacy and safety of drugs. High altitude hypoxia significantly changes the structure and diversity of the gut microbiota, which may play a role in drug metabolism. This article reviews the effects of high-altitude hypoxia on the gut microbiota and the effects these changes on drug metabolism.
Key words:    high altitude hypoxia    drug metabolism    gut microbiota    CYP450   
收稿日期: 2021-05-29
DOI: 10.16438/j.0513-4870.2021-0805
基金项目: 国家自然科学基金资助项目(81760673);青海省创新平台建设专项(2021-ZJ-T03).
通讯作者: 李向阳,Tel:86-971-5362082,Fax:86-971-5362383,
E-mail:qhmclxy@163.com
Email: qhmclxy@163.com
相关功能
PDF(603KB) Free
打印本文
0
作者相关文章
白雪  在本刊中的所有文章
刘贵琴  在本刊中的所有文章
杨建鑫  在本刊中的所有文章
段雅彬  在本刊中的所有文章
朱俊博  在本刊中的所有文章
李向阳  在本刊中的所有文章

参考文献:
[1] Li XY, Liu YN, Li YP, et al. Pharmacokinetic study of sulfamethoxazole in healthy Han volunteers living at plain and native Han and Tibetan healthy volunteers living at high altitude[J]. Acta Pharm Sin (药学学报), 2011, 46:1117-1122.
[2] Zhang JL, Li XY. A review of drug metabolism under hypoxia environment at high altitude[J]. Acta Pharm Sin (药学学报), 2015, 50:1073-1079.
[3] Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489:220-230.
[4] Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]. Proc Natl Acad Sci U S A, 2010, 107:18933-18938.
[5] Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease[J]. Curr Opin Gastroenterol, 2015, 31:69-75.
[6] Xing JY, Ying YQ, Mao CX, et al. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota[J]. Nat Commun, 2018, 9:2020-2033.
[7] Sun CN, Chen L, Zu S. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice[J]. Saudi Pharm J, 2019, 27:1146-1156.
[8] Liu GQ, Bai X, Duan YB, et al. Changes in the intestinal flora of rats under high altitude hypoxia[J]. Acta Pharm Sin (药学学报), 2021, 56:1100-1108.
[9] Choi MS, Yu JS, Yoo HH, et al. The role of gut microbiota in the pharmacokinetics of antihypertensive drugs[J]. Pharmacol Res, 2018, 130:164-171.
[10] Magne F, Gotteland M, Gauthier L, et al. The firmicutes/bacteroidetes ratio:a relevant marker of gut dysbiosis in obese patients[J]. Nutrients, 2020, 12:1474.
[11] Willyard C. When drugs unintentionally affect gut bugs[J]. Nat Rev Drug Discov, 2018, 17:383-384.
[12] Zhang JH, Sun YM, Wang R, et al. Gut microbiota-mediated drug-drug interaction between amoxicillin and aspirin[J]. Sci Rep, 2019, 9:16194.
[13] Kim JK, Choi MS, Jeong JJ, et al. Effect of probiotics on pharmacokinetics of orally administered acetaminophen in mice[J]. Drug Metab Dispos, 2018, 46:122-130.
[14] Mu CL, Zhu WY. Antibiotic effects on gut microbiota, metabolism, and beyond[J]. Appl Microbiol Biotechnol, 2019, 103:9277-9285.
[15] Loiacono LA, David SS. Detection of hypoxia at the cellular level[J]. Crit Care Clin, 2010, 26:409-412.
[16] Anand AC, Sashindran VK, Mohan L. Gastrointestinal problems at high altitude[J]. Trop Gastroenterol, 2006, 27:147-153.
[17] Adak A, Maity C, Ghosh K, et al. Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia[J]. Z Gastroenterol, 2014, 52:180-186.
[18] Zhang W, Jiao LF, Liu RX, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice[J]. PLoS One, 2018, 13:e0203701.
[19] Ma Y, Ma S, Shang CX, et al. Effects of hypoxic exposure on rats' gut microbiota[J]. Microbiol China (微生物学通报), 2019, 46:120-129.
[20] Li L, Zhao X. Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing[J]. Sci Rep, 2015, 5:14682.
[21] Li K, Dan Z, Gesang L, et al. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes[J]. PLoS One, 2016, 11:e0155863.
[22] Moeller AH, Li Y, Mpoudi NE, et al. Rapid changes in the gut microbiome during human evolution[J]. Proc Natl Acad Sci U S A, 2014, 111:16431-16435.
[23] Lan DL, Ji WH, Lin BS, et al. Correlations between gut microbiota community structures of Tibetans and geography[J]. Sci Rep, 2017, 7:16982.
[24] Jia Z, Zhao X, Liu X, et al. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals[J]. mSystems, 2020, 5:e00660-19.
[25] Li XY, Gao F, Li ZQ, et al. Comparison of the pharmacokinetics of sulfamethoxazole in male chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude:an open-label, controlled, prospective study[J]. Clin Ther, 2009, 31:2744-2754.
[26] Nian YQ. Effect of Simulated High Altitude Hypoxia on Pharmacokinetics of Metformin Hydrochloride and Acetaminophen (模拟高原低氧对盐酸二甲双胍和对乙酰氨基酚药代动力学特征的影响)[D]. Qinghai:Qinghai University, 2019.
[27] Gong WW, Liu SH, Xu PX, et al. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats[J]. Molecules, 2015, 20:6901-6912.
[28] Gola S, Gupta A, Keshri GK, et al. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude[J]. J Pharm Biomed Anal, 2016, 121:114-122.
[29] Webster LK, Jones DB, Mihaly GW, et al. Effect of hypoxia on oxidative and reductive pathways of omeprazole metabolism by the isolated perfused rat liver[J]. Biochem Pharmacol, 1985, 34:1239-1245.
[30] Ritschel WA, Paulos C, Arancibia A, et al. Pharmacokinetics of meperidine in healthy volunteers after short-and long-term exposure to high altitude[J]. J Clin Pharmacol, 1996, 36:610-616.
[31] Zhang JH, Wang R, Xue H, et al. Effect of acute exposure to high altitude on pharmacokinetics of propranolol and metoprolol in rats[J]. J South Med Univ (南方医科大学学报), 2014, 34:1616-1620.
[32] Zhang JH, Wang R, Xie H, et al. Effects of aminophylline on the pharmacokinetic parameters at high altitude[J]. Pharm J Chin PLA (解放军药学学报), 2014, 30:125-131.
[33] Anjana GV, Krishna K, Joginder D. Effect of intermittent hypobaric hypoxia on efficacy and clearance of drug[J]. Indian J Med Res, 2012, 135:211-216.
[34] Luo BF, Wang R, Li WB, et al. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m[J]. Biomed Pharmacother, 2017, 89:1078-1085.
[35] Richer M, Lam YW. Hypoxia, arterial pH and theophylline disposition[J]. Clin Pharmacokinet, 1993, 25:283-299.
[36] du Souich P, Hartemann D, Saunier C. Effect of acute and chronic moderate hypoxia on diltiazem kinetics and metabolism in the dog[J]. Pharmacology, 1993, 47:378-385.
[37] Duan YB, Zhu JB, Yang JX, et al. Effect of hypoxia on drug metabolizing enzymes and transporters and the role of microRNA[J]. Acta Pharm Sin (药学学报), 2021, 56:50-60.
[38] Fradette C, Batonga J, Teng S, et al. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver[J]. Drug Metab Dispos, 2007, 35:765-771.
[39] Kurdi J, Maurice H, Elkadi AO, et al. Effect of hypoxia alone or combined with inflammation and 3-methylcholanthrene on hepatic cytochrome P450 in conscious rabbits[J]. Br J Pharmacol, 1999, 128:365-373.
[40] Li XY, Wang XJ, Li YP, et al. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats[J]. Pharmacology, 2014, 93:76-83.
[41] Suzuki E, Matsunaga T, Aonuma A, et al. Effects of hypoxia-inducible factor-1α chemical stabilizer, CoCl2 and hypoxia on gene expression of CYP3As in human fetal liver cells[J]. Drug Metab Pharmacokinet, 2012, 27:398-404.
[42] Legendre C, Hori T, Loyer P, et al. Drug-metabolising enzymes are down-regulated by hypoxia in differentiated human hepatoma HepaRG cells:HIF-1α involvement in CYP3A4 repression[J]. Eur J Cancer, 2009, 45:2882-2892.
[43] Du SP, Fradette C. The effect and clinical consequences of hypoxia on cytochrome P450, membrane carrier proteins activity and expression[J]. Expert Opin Drug Metab Toxicol, 2011, 7:1083-1100.
[44] Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics[J]. J Clin Invest, 2014, 124:4173-4181.
[45] Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity[J]. Expert Opin Drug Metab Toxicol, 2016, 12:31-40.
[46] Malfatti MA, Kuhn EA, Murugesh DK, et al. Manipulation of the gut microbiome alters acetaminophen biodisposition in mice[J]. Sci Rep, 2020, 10:4571.
[47] Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta[J]. Science, 2013, 341:295-298.
[48] Klatt NR, Cheu R, Birse K, et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women[J]. Science, 2017, 356:938-945.
[49] Elmer GW, Remmel RP. Role of the intestinal microflora in clonazepam metabolism in the rat[J]. Xenobiotica, 1984, 14:829-840.
[50] Maini RV, Bess EN, Bisanz JE, et al. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism[J]. Science, 2019, 364:6445.
[51] Yip LY, Aw CC, Lee SH, et al. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat[J]. Hepatology, 2018, 67:282-295.
[52] Tobin P, Clarke S, Seale JP, et al. The in vitro metabolism of irinotecan (CPT-11) by carboxylesterase and beta-glucuronidase in human colorectal tumours[J]. Br J Clin Pharmacol, 2006, 62:122-129.
[53] Pellock SJ, Redinbo MR. Glucuronides in the gut:sugar-driven symbioses between microbe and host[J]. J Biol Chem, 2017, 292:8569-8576.
[54] Kim IS, Yoo DH, Jung IH, et al. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin[J]. Biochem Pharmacol, 2016, 122:72-79.
[55] Chung KT, Stevens SE, Cerniglia CE. The reduction of azo dyes by the intestinal microflora[J]. Crit Rev Microbiol, 1992, 18:175-190.
[56] Zhang JH, Zhang JM, Wang R. Gut microbiota modulates drug pharmacokinetics[J]. Drug Metab Rev, 2018, 50:357-368.
[57] He Y, Fu LH, Li YP, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity[J]. Cell Metab, 2021, 33:988-1000.
[58] Fu ZD, Selwyn FP, Cui JY, et al. RNA-Seq profiling of intestinal expression of xenobiotic processing genes in germ-free mice[J]. Drug Metab Dispos, 2017, 45:1225-1238.
[59] Dabek M, McCrae SI, Stevens VJ, et al. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria[J]. FEMS Microbiol Ecol, 2008, 66:487-495.
[60] Alexander C, Swanson KS, Fahey GC, et al. Perspective:physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation[J]. Adv Nutr, 2019, 10:576-589.
[61] Poesen R, Evenepoel P, De LH, et al. Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD[J]. Clin J Am Soc Nephrol, 2016, 11:1136-1144.
[62] Clayton TA, Baker D, Lindon JC, et al. Pharmaco-metabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism[J]. Proc Natl Acad Sci U S A, 2009, 106:14728-14733.
[63] Pavlovic N, Golocorbin KS, danic M, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles[J]. Front Pharmacol, 2018, 9:1283-1305.
[64] Zarrinpar A, Chaix A, Xu ZZ, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism[J]. Nat Commun, 2018, 9:2872.
[65] Toda T, Saito N, Ikarashi N, et al. Intestinal flora induces the expression of CYP3A in the mouse liver[J]. Xenobiotica, 2009, 39:323-334.
[66] Toda T, Ohi K, Kudo T, et al. Ciprofloxacin suppresses CYP3A in mouse liver by reducing lithocholic acid-producing intestinal flora[J]. Drug Metab Pharmacokinet, 2009, 24:201-208.
[67] Morgan ET, Dempsey JL, Mimche SM, et al. Physiological regulation of drug metabolism and transport:pregnancy, microbiome, inflammation, infection, and fasting[J]. Drug Metab Dispos, 2018, 46:503-513.
[68] Illes P, Krasulova K, Vyhlidalova B, et al. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor[J]. Toxicol Lett, 2020, 334:87-93.
[69] Selwyn FP, Cheng SL, Klaassen CD, et al. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics[J]. Drug Metab Dispos, 2016, 44:262-274.
[70] Kuno T, Hirayama KM, Ito S, et al. Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice[J]. Mol Pharm, 2016, 13:2691-2701.
[71] Zhou XJ, Nian YQ, Qiao YJ, et al. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude[J]. Curr Drug Metab, 2018, 19:960-969.
[72] Fradette C, Bleau AM, Pichette V, et al. Hypoxia-induced down-regulation of CYP1A1/1A2 and up-regulation of CYP3A6 involves serum mediators[J]. Br J Pharmacol, 2002, 137:881-891.
[73] Rahman MS, Thomas P. Effects of hypoxia exposure on hepatic cytochrome P4501A (CYP1A) expression in atlantic croaker:molecular mechanisms of CYP1A down-regulation[J]. PLoS One, 2012, 7:e40825.
[74] Fradette C, Du SP. Effect of hypoxia on cytochrome P450 activity and expression[J]. Curr Drug Metab, 2004, 5:257-271.
[75] Duan YB, Zhu JB, Yang JX, et al. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR[J]. Front Pharmacol, 2020, 11:574176.
[76] Yan R, Yang Y, Chen YJ. Pharmacokinetics of Chinese medicines:strategies and perspectives[J]. Chin Med, 2018, 13:24.
[77] Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity[J]. Science, 2019, 363:aat9931.
[78] Lagier JC, Khelaifia S, Alou MT, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nat Microbiol, 2016, 1:16203.
[79] Jia YF, Wang PP, Chen YJ, et al. Advances in gut microbial drug metabolism[J]. Prog Pharm Sci (药学进展), 2020, 44:83-99.
相关文献:
1.于航, 郑瑞芳, 苏文灵, 邢建国, 王琰.基于肠道菌的黄酮类成分代谢特征及药理学思考[J]. 药学学报, 2021,56(7): 1757-1768
2.张正威, 赵朕雄, 王琰, 蒋建东.药物基于“肠-脑”通路的研究进展[J]. 药学学报, 2021,56(3): 643-653
3.孙月梅, 张雅婷, 张娟红, 李雪, 王荣, 李文斌.药物微生物组学研究进展[J]. 药学学报, 2020,55(10): 2314-2321
4.尚芳红, 俸珊, 陈乾, 陈先进, 徐晓玉.加味佛手散胶囊体外体内对大鼠肝脏CYP450酶活性的影响[J]. 药学学报, 2019,54(6): 1101-1107
5.赵芊, 扈金萍, 江骥, 李燕, 胡蓓.丁苯酞与大鼠和人肝CYP450同工酶的相互作用[J]. 药学学报, 2015,50(5): 541-546