药学学报, 2021, 56(10): 2867-2875
引用本文:
李小丽, 魏丽, 刘谦, 李佳, 张芳, 张永清, 蒲高斌. 金银花MLO家族全基因组序列鉴定及表达分析[J]. 药学学报, 2021, 56(10): 2867-2875.
LI Xiao-li, WEI Li, LIU Qian, LI Jia, ZHANG Fang, ZHANG Yong-qing, PU Gao-bin. Genome-scale identification and expression analysis of MLO genes in Lonicera japonica[J]. Acta Pharmaceutica Sinica, 2021, 56(10): 2867-2875.

金银花MLO家族全基因组序列鉴定及表达分析
李小丽1,2, 魏丽3, 刘谦1,2, 李佳1,2, 张芳1,2, 张永清1,2, 蒲高斌1,2*
1. 山东中医药大学, 山东 济南 250355;
2. 山东省中药质量控制与全产业链建设协同创新中心, 山东 济南 250355;
3. 山东英才学院, 山东 济南 250100
摘要:
通过全基因组测序获得金银花MLO家族候选基因25个。生物信息学分析发现,该家族蛋白氨基酸数量为137~846,理论等电点在5.02~9.50之间,富含碱性氨基酸,有1个蛋白不含跨膜结构域,其他蛋白为3~10个。亚细胞定位预测结果显示,有21个蛋白定位于细胞膜上,1个定位于叶绿体。通过对金银花、小麦、拟南芥、番茄、普通烟草、林烟草和绒毛状烟草等物种的133个MLO蛋白构建系统发育树,显示金银花MLO家族蛋白可分为5个亚组。组织特异性分析发现,金银花MLO家族基因的表达具有明显的组织特异性。其中8个基因在叶中高表达,2个基因在茎中高表达,2个基因在花中高表达。接种白粉菌后,有4个基因显著上调表达,其中MLO14增加最多,比对照提高了2 000多倍。本研究初步解析了金银花白粉病发生相关基因MLO的组成及表达情况,为进一步利用MLO作为靶基因,培育金银花抗白粉病新种质奠定了基础。
关键词:    金银花      MLO蛋白      白粉病      生物信息学      表达模式     
Genome-scale identification and expression analysis of MLO genes in Lonicera japonica
LI Xiao-li1,2, WEI Li3, LIU Qian1,2, LI Jia1,2, ZHANG Fang1,2, ZHANG Yong-qing1,2, PU Gao-bin1,2*
1. Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
2. Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan 250355, China;
3. Shandong Yingcai University, Jinan 250100, China
Abstract:
Twenty-five candidate MLO genes of Lonicera japonica were obtained by whole genome sequencing. Bioinformatics analysis showed that the number of amino acids in the protein family ranged from 137 to 846, the theoretical isoelectric point ranged from 5.02 to 9.50, and it was rich in basic amino acids. One protein did not contain transmembrane domain, and the other proteins ranged from 3 to 10. The results of subcellular localization showed that 21 proteins were located on the cell membrane and 1 protein was located on the chloroplast. Phylogenetic trees were constructed from 133 MLO proteins of Lonicera japonica, Triticum aestivum, Arabidopsis thaliana, Solanum lycopersicum, Nicotiana tabacum, Nicotiana sylvestris and Nicotiana tomentosiformis. The results indicated that MLO family proteins of Lonicera japonica could be divided into five subgroups. Tissue specific analysis showed that the expression of MLO genes in Lonicera japonica had obvious tissue specificity. Among them, 8 genes were highly expressed in leaves, 2 genes in stems and 2 genes in flowers. Four genes were significantly upregulated after inoculation with powdery mildew, among which MLO14 increased the most, which was more than 2 000 times higher than that of the control. In this study, the composition and expression of the MLO gene related to the occurrence of powdery mildew of Lonicera japonica were preliminarily analyzed, which laid a foundation for the further use of MLO as a target gene to develop new germplasm resistant to powdery mildew of Lonicera japonica.
Key words:    Lonicera japonica    MLO protein    powdery mildew    bioinformatics    expression pattern   
收稿日期: 2021-05-14
DOI: 10.16438/j.0513-4870.2021-0717
基金项目: 国家自然科学基金资助项目(81872963);中央本级重大增减支项目“名贵中药资源可持续利用能力建设”(2060302);山东省高等学校优秀青年创新团队支持计划(2019KJE004);山东省重大科技创新工程(2019JZZY011020).
通讯作者: 蒲高斌,E-mail:gbpu@163.com
Email: gbpu@163.com
相关功能
PDF(1238KB) Free
打印本文
0
作者相关文章
李小丽  在本刊中的所有文章
魏丽  在本刊中的所有文章
刘谦  在本刊中的所有文章
李佳  在本刊中的所有文章
张芳  在本刊中的所有文章
张永清  在本刊中的所有文章
蒲高斌  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission.Pharmacopeia of the People's Republic of China (中华人民共和国药典)[S]. Beijing:China Medical Science Press, 2020:52, 230.
[2] Chen ML, Liu HY, Li Q, et al. Effect of the occurrence degree of powdery mildew on the content of chlorogenic acid in Lonicera japonica[J]. China J Chin Mater Med (中国中药杂志), 2006, 31:846-847.
[3] Yang F. Control effect of three fungicides against powdery mildew of Lonicera japonica Thunb[J]. J Anhui Agric (安徽农业学报), 2017, 45:162-163+171.
[4] Su GH, Ou SS, He YQ, et al. Analysis on influencing factors for Lonicera japonica withering in summer[J]. J Anhui Agric (安徽农业学报), 2016, 44:37-39.
[5] Yu L, She HL. Occurrence regularity and comprehensive control techniques of powdery mildew of honeysuckle[J]. Mod Rural Sci Technol (现代农村科技), 2012, 16:29.
[6] Ye GB, Zhuang QH, Zhu GY, et al. Situation of pesticide residues and development of pesticide products registered for Lonicera Japonicae Flos in China[J]. Pest Sci Admin (农药科学与管理), 2020, 41:26-32.
[7] Chen CR, He FZ, Liu MZ, et al. Application of expression quantitative trait loci analysis in pharmacogenomics[J]. Acta Pharm Sin (药学学报), 2017, 52:1203-1208.
[8] Wang Y, Huang G, Yang H, et al. Advances on nonviral vectors of CRISPR/Cas9 system for genome editing[J]. Acta Pharm Sin (药学学报), 2020, 55:2606-2617.
[9] Lu D, Li L, Deng XM. CRISPR/Cas9 and its application in drugs development[J]. Acta Pharm Sin (药学学报), 2018, 53:11-20.
[10] Win KT, Zhang C, Lee S. Genome-wide identification and description of MLO family genes in pumpkin (Cucurbita maxima Duch.)[J]. Hort Environ Biotechnol, 2018, 59:397-410.
[11] Shi JL, Wan HJ, Zai WS, et al. Phylogenetic relationship of plant MLO genes and transcriptional response of MLO genes to ralstonia solanacearum in tomato[J]. Genes, 2020, 11:487.
[12] Freisleben R, Lein A. Über die auffindung einer mehltauresistenten mutante nach röntgenbestrahlung einer anfälligen reinen linie von sommergerste[J]. Naturwissenschaften, 1942, 30:608.
[13] Büschges R, Hollricher K, Panstruga R, et al. The barley MLO gene:a novel control element of plant pathogen resistance[J]. Cell, 1997, 88:695-705.
[14] Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nat Biotechnol, 2014, 32:947-951.
[15] Nekrasov V, Wang C, Win J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Sci Rep, 2017, 7:482.
[16] Michela A, Stefano P, Domenico C, et al. Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1[J]. Transgen Res, 2015, 24:847-858.
[17] Pessina S, Angeli D, Martens S, et al. The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica)[J]. Plant Biotechnol J, 2016, 14:2033-2044.
[18] Wan DY, Guo Y, Cheng Y, et al. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera)[J]. Hort Res, 2020, 7:116.
[19] Bhat RA, Miklis M, Schmelzer E, et al. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain[J]. Proc Natl Acad Sci U S A, 2005, 102:3135-3140.
[20] Kim MC, Panstruga R, Elliott C, et al. Calmodulin interacts with MLO protein to regulate defence against mildew in barley[J]. Nature, 2002, 416:447-451.
[21] Panstruga R. Serpentine plant MLO proteins as entry portals for powdery mildew fungi[J]. Biochem Soc Transact, 2005, 33:389-392.
[22] Consonni C, Humphry ME, Hartmann HA, et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis[J]. Nat Genet, 2006, 38:716-720.
[23] Xiang GS, Wang KJ, Yan HJ, et al. Bioinformatics analysis of MLO protein family in rosaceae plants[J]. Gen Appl Biol (基因组学与应用生物学), 2018, 37:2043-2059.
[24] Qiu XQ, Wang QG, Jian GY, et al. Subcellular localization and functional analysis of powdery mildew resistance gene MLO in rose[J]. Acta Hort Sin (园艺学报), 2017, 44:933-943.
[25] Zheng Z, Nonomura T, Appiano M, et al. Loss of function in MLO orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica[J]. PLoS One, 2013, 8:e70723.
[26] Zhang XL, Zhang JS, Yu SZ, et al. Genome sequence identification and expression analysis of the NtMLO family in tobacco[J]. Plant Physiol J (植物生理学报), 2019, 55:1705-1720.
[27] Stefan K, Lina P, Ralph P. Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins[J]. Gen Biol Evol, 2016, 8:878-895.
[28] Liu BL, Sun Y, Hao QT, et al. Genome-wide identification and expression profile analysis of millet MLO family[J]. J Nucl Agric Sci (核农学报), 2018, 32:1492-1501.
[29] Chen YB, Wang Y, Zhang HL. Genome-wide analysis of the mildew resistance locus o (MLO) gene family in tomato (Solanum lycopersicum L.)[J]. Plant Omics, 2014, 7:87-93.
[30] Zhang XL, Zhang J, Lei B, et al. Research progress of plant MLO protein[J]. Plant Physiol J (植物生理学报), 2018, 54:1159-1171.
[31] Chen L, Qiu XQ, Zhang H, et al. Bioinformatics analysis of MLO gene in different species[J]. Southwest China J Agric Sci (西南农业学报), 2012, 25:1302-1308.
[32] Panstruga R. Discovery of novel conserved peptide domains by ortholog comparison within plant multi- protein families[J]. Plant Mol Biol, 2005, 59:485-500.
相关文献:
1.齐琳洁, 袁媛, 伍翀, 黄璐琦, 陈平.金银花DNA去甲基化酶基因的生物信息学分析[J]. 药学学报, 2015,50(3): 367-371