药学学报, 2021, 56(11): 2887-2899
引用本文:
庄宇婷, 吕延杰, 潘振伟. 非编码RNAs在心肌纤维化中的研究进展[J]. 药学学报, 2021, 56(11): 2887-2899.
ZHUANG Yu-ting, LÜ Yan-jie, PAN Zhen-wei. Research progress of noncoding RNAs in cardiac fibrosis[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 2887-2899.

非编码RNAs在心肌纤维化中的研究进展
庄宇婷1,4, 吕延杰1,3, 潘振伟1,2*
1. 哈尔滨医科大学药学院, 黑龙江 哈尔滨 150081;
2. 中国医学科学院寒地慢病研究创新单元, 黑龙江 哈尔滨 150081;
3. 黑龙江省医学科学院中国北方转化医学研究与合作中心, 黑龙江 哈尔滨 150081;
4. 哈尔滨医科大学附属肿瘤医院科研中心, 黑龙江 哈尔滨 150081
摘要:
心肌纤维化是多种心血管疾病的重要病理特征和改变,包括心肌梗死和心衰等。目前,心肌纤维化的分子机制尚不明确,且无有效的治疗药物。非编码RNAs是一类不具有编码蛋白能力的RNAs,可以在转录调控、转录后调控和表观遗传学水平影响基因的表达,参与细胞的生物学过程。非编码RNAs通过影响心脏成纤维细胞增殖和转化等过程参与心肌纤维化的调控,可作为心肌纤维化的潜在干预靶点和生物标记物,为心肌纤维化相关疾病的治疗提供新的策略和方法。本文旨在对非编码RNAs在心肌纤维化中的功能和机制的研究进展进行综述。
关键词:    非编码RNA      基因调控      心肌纤维化      生物标记物      分子机制     
Research progress of noncoding RNAs in cardiac fibrosis
ZHUANG Yu-ting1,4, LÜ Yan-jie1,3, PAN Zhen-wei1,2*
1. College of Pharmacy, Harbin Medical University, Harbin 150081, China;
2. Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin 150081, China;
3. China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin 150081, China;
4. Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin 150081, China
Abstract:
Cardiac fibrosis is a vital pathological feature of various cardiovascular diseases, including myocardial infarction and heart failure. However, there have been few clinical interventions to treat cardiac fibrosis. Noncoding RNAs (ncRNAs) are a class of RNAs that do not encode proteins. ncRNAs participate in various cellular biological processes and regulate gene expression at transcription, post-transcription and epigenetic levels. Recent studies demonstrate that ncRNAs participate in the regulation of cardiac fibrosis by affecting the proliferation and transition of cardiac fibroblasts. ncRNAs can be used as potential intervention targets and biomarkers for cardiac fibrosis, provide new strategies and approach for treating and preventing fibrosis associated cardiovascular diseases. This review summarizes the function and mechanisms of ncRNAs in cardiac fibrosis.
Key words:    noncoding RNA    gene regulation    cardiac fibrosis    biomarker    molecular mechanism   
收稿日期: 2021-05-31
DOI: 10.16438/j.0513-4870.2021-0811
基金项目: 国家自然科学基金资助项目(82000256).
通讯作者: 潘振伟,Tel:86-451-86671354,E-mail:panzw@ems.hrbmu.edu.cn
Email: panzw@ems.hrbmu.edu.cn
相关功能
PDF(631KB) Free
打印本文
0
作者相关文章
庄宇婷  在本刊中的所有文章
吕延杰  在本刊中的所有文章
潘振伟  在本刊中的所有文章

参考文献:
[1] Mao L, Liu S, Hu L, et al. Mir-30 family: a promising regulator in development and disease[J]. Biomed Res Int, 2018, 2018: 9623412.
[2] Bartel DP. Metazoan microRNAs[J]. Cell, 2018, 173: 20-51.
[3] Zhang W, Xu W, Feng Y, et al. Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy[J]. J Cell Mol Med, 2019, 23: 5859-5867.
[4] Zhang X, Dong S, Jia Q, et al. The microRNA in ventricular remodeling: the miR-30 family[J]. Biosci Rep, 2019, 39: BSR20190788.
[5] Han Q, Liu D, Convertino M, et al. MiRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus[J]. Neuron, 2018, 99: 449-463.e446.
[6] Yang D, Wan X, Dennis AT, et al. MicroRNA biophysically modulates cardiac action potential by direct binding to ion channel[J]. Circulation, 2021, 143: 1597-1613.
[7] Creemers EE, van Rooij E. Function and therapeutic potential of noncoding RNAs in cardiac fibrosis[J]. Circ Res, 2016, 118: 108-118.
[8] Watanabe K, Narumi T, Watanabe T, et al. The association between microRNA-21 and hypertension-induced cardiac remodeling[J]. PLoS One, 2020, 15: e0226053.
[9] Reddy S, Hu DQ, Zhao M, et al. MiR-21 is associated with fibrosis and right ventricular failure[J]. JCI Insight, 2017, 2: e91625.
[10] Yuan J, Chen H, Ge D, et al. MiR-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7[J]. Cell Physiol Biochem, 2017, 42: 2207-2219.
[11] Szemraj-Rogucka ZM, Szemraj J, Masiarek K, et al. Circulating microRNAs as biomarkers for myocardial fibrosis in patients with left ventricular non-compaction cardiomyopathy[J]. Arch Med Sci, 2019, 15: 376-384.
[12] Liang H, Zhang C, Ban T, et al. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis[J]. Int J Biochem Cell Biol, 2012, 44: 2152-2160.
[13] Li D, Mao C, Zhou E, et al. MicroRNA-21 mediates a positive feedback on angiotensin II-induced myofibroblast transformation[J]. J Inflamm Res, 2020, 13: 1007-1020.
[14] Dong X, Liu S, Zhang L, et al. Downregulation of miR-21 is involved in direct actions of ursolic acid on the heart: implications for cardiac fibrosis and hypertrophy[J]. Cardiovasc Ther, 2015, 33: 161-167.
[15] Zhou XL, Xu H, Liu ZB, et al. MiR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1[J]. J Cell Mol Med, 2018, 22: 3816-3824.
[16] Tao H, Zhang M, Yang JJ, et al. MicroRNA-21 via dysregulation of WW domain-containing protein 1 regulate atrial fibrosis in atrial fibrillation[J]. Heart Lung Circ, 2018, 27: 104-113.
[17] Cao W, Shi P, Ge JJ. MiR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway[J]. BMC Cardiovasc Disord, 2017, 17: 88.
[18] Hinkel R, Ramanujam D, Kaczmarek V, et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury[J]. J Am Coll Cardiol, 2020, 75: 1788-1800.
[19] Fan X, Gao Y, Zhang X, et al. A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis[J]. PLoS One, 2020, 15: e0244065.
[20] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of micrornas after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci U S A, 2008, 105: 13027-13032.
[21] Zhang Y, Wang JH, Zhang YY, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting tgfbeta1 and miR-29 pathways[J]. Sci Rep, 2016, 6: 23010.
[22] Qi H, Liu Y, Li S, et al. Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via p21/p27 and miR-29 family pathways in rats[J]. Mol Ther Nucleic Acids, 2017, 8: 277-290.
[23] Sassi Y, Avramopoulos P, Ramanujam D, et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling[J]. Nat Commun, 2017, 8: 1614.
[24] Dawson K, Wakili R, Ordog B, et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation[J]. Circulation, 2013, 127: 1466-1475, 1475e1-28.
[25] Castoldi G, Di Gioia CR, Bombardi C, et al. MiR-133a regulates collagen 1a1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension[J]. J Cell Physiol, 2012, 227: 850-856.
[26] Chen S, Puthanveetil P, Feng B, et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes[J]. J Cell Mol Med, 2014, 18: 415-421.
[27] Sang HQ, Jiang ZM, Zhao QP, et al. MicroRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats[J]. Biomed Pharmacother, 2015, 71: 185-189.
[28] Yu BT, Yu N, Wang Y, et al. Role of miR-133a in regulating TGF-β1 signaling pathway in myocardial fibrosis after acute myocardial infarction in rats[J]. Eur Rev Med Pharmacol Sci, 2019, 23: 8588-8597.
[29] Shan H, Zhang Y, Lu Y, et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines[J]. Cardiovasc Res, 2009, 83: 465-472.
[30] Dakhlallah D, Zhang J, Yu L, et al. MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart[J]. J Cardiovasc Pharmacol, 2015, 65: 241-251.
[31] Wang BW, Wu GJ, Cheng WP, et al. MicroRNA-208a increases myocardial fibrosis via endoglin in volume overloading heart[J]. PLoS One, 2014, 9: e84188.
[32] Shyu KG, Wang BW, Wu GJ, et al. Mechanical stretch via transforming growth factor-β1 activates microRNA208a to regulate endoglin expression in cultured rat cardiac myoblasts[J]. Eur J Heart Fail, 2013, 15: 36-45.
[33] van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Science, 2007, 316: 575-579.
[34] Prado-Uribe MD, Soto-Abraham MV, Mora-Villalpando CJ, et al. Role of thyroid hormones and miR-208 in myocardial remodeling in 5/6 nephrectomized rats[J]. Arch Med Res, 2013, 44: 616-622.
[35] Matkovich SJ, Hu Y, Eschenbacher WH, et al. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy[J]. Circ Res, 2012, 111: 521-531.
[36] Shieh JT, Huang Y, Gilmore J, et al. Elevated miR-499 levels blunt the cardiac stress response[J]. PLoS One, 2011, 6: e19481.
[37] Du W, Liang H, Gao X, et al. MicroRNA-328, a potential anti-fibrotic target in cardiac interstitial fibrosis[J]. Cell Physiol Biochem, 2016, 39: 827-836.
[38] Zhao D, Li C, Yan H, et al. Cardiomyocyte derived miR-328 promotes cardiac fibrosis by paracrinely regulating adjacent fibroblasts[J]. Cell Physiol Biochem, 2018, 46: 1555-1565.
[39] Pan Z, Sun X, Shan H, et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway[J]. Circulation, 2012, 126: 840-850.
[40] Chen Z, Lu S, Xu M, et al. Role of miR-24, Furin, and transforming growth factor-β1 signal pathway in fibrosis after cardiac infarction[J]. Med Sci Monit, 2017, 23: 65-70.
[41] Zhang L, Yin H, Jiao L, et al. Abnormal downregulation of caveolin-3 mediates the pro-fibrotic action of microRNA-22 in a model of myocardial infarction[J]. Cell Physiol Biochem, 2018, 45: 1641-1653.
[42] Jazbutyte V, Fiedler J, Kneitz S, et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart[J]. Age (Dordr), 2013, 35: 747-762.
[43] Zhou Y, Deng L, Zhao D, et al. MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13[J]. J Cell Mol Med, 2016, 20: 495-505.
[44] Valkov N, King ME, Moeller J, et al. MicroRNA-1-mediated inhibition of cardiac fibroblast proliferation through targeting cyclin D2 and CDK6[J]. Front Cardiovasc Med, 2019, 6: 65.
[45] Rawal S, Munasinghe PE, Nagesh PT, et al. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the type 2 diabetic human and mouse heart[J]. Clin Sci (Lond), 2017, 131: 847-863.
[46] van Almen GC, Verhesen W, van Leeuwen RE, et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure[J]. Aging Cell, 2011, 10: 769-779.
[47] Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction[J]. J Cell Mol Med, 2012, 16: 2150-2160.
[48] Qu X, Du Y, Shu Y, et al. Miat is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium[J]. Sci Rep, 2017, 7: 42657.
[49] Wang B, Zhang A, Wang H, et al. MiR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease[J]. Theranostics, 2019, 9: 1864-1877.
[50] Zhang Y, Huang XR, Wei LH, et al. MiR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling[J]. Mol Ther, 2014, 22: 974-985.
[51] Xue Y, Fan X, Yang R, et al. MiR-29b-3p inhibits post-infarct cardiac fibrosis by targeting FOS[J]. Biosci Rep, 2020, 40: BSR20201227.
[52] Chen L, Ji Q, Zhu H, et al. MiR-30a attenuates cardiac fibrosis in rats with myocardial infarction by inhibiting CTGF[J]. Exp Ther Med, 2018, 15: 4318-4324.
[53] Duisters RF, Tijsen AJ, Schroen B, et al. MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling[J]. Circ Res, 2009, 104: 170-178, 6p following 178.
[54] Zhang W, Chang H, Zhang H, et al. MiR-30e attenuates isoproterenol-induced cardiac fibrosis through suppressing Snai1/TGF-β signaling[J]. J Cardiovasc Pharmacol, 2017, 70: 362-368.
[55] Zhao X, Wang K, Liao Y, et al. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFβRI on cardiac fibroblasts[J]. Cell Physiol Biochem, 2015, 35: 213-226.
[56] Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circ Res, 2010, 106: 166-175.
[57] Yuan J, Liu H, Gao W, et al. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress[J]. Theranostics, 2018, 8: 2565-2582.
[58] Sun F, Zhuang Y, Zhu H, et al. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction[J]. J Mol Cell Cardiol, 2019, 133: 188-198.
[59] Wu C, Dong S, Li Y. Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload[J]. Int J Mol Med, 2015, 35: 893-900.
[60] Chiasson V, Takano APC, Guleria RS, et al. Deficiency of microRNA miR-1954 promotes cardiac remodeling and fibrosis[J]. J Am Heart Assoc, 2019, 8: e012880.
[61] Liang H, Pan Z, Zhao X, et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d[J]. Theranostics, 2018, 8: 1180-1194.
[62] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456: 980-984.
[63] Shi P, Zhao XD, Shi KH, et al. MiR-21-3p triggers cardiac fibroblasts pyroptosis in diabetic cardiac fibrosis via inhibiting androgen receptor[J]. Exp Cell Res, 2021, 399: 112464.
[64] Zhang L, Yin H, Jiao L, et al. Abnormal downregulation of caveolin-3 mediates the pro-fibrotic action of microRNA-22 in a model of myocardial infarction[J]. Cell Physiol Biochem, 2018, 45: 1641-1653.
[65] Fu Q, Lu Z, Fu X, et al. MicroRNA 27b promotes cardiac fibrosis by targeting the FBW7/Snail pathway[J]. Aging (Albany NY), 2019, 11: 11865-11879.
[66] Bernardo BC, Gao XM, Winbanks CE, et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function[J]. Proc Natl Acad Sci U S A, 2012, 109: 17615-17620.
[67] Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18: 1355-1365.
[68] Piegari E, Cozzolino A, Ciuffreda LP, et al. Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity[J]. Sci Rep, 2020, 10: 12250.
[69] Shen J, Xing W, Gong F, et al. MiR-150-5p retards the progression of myocardial fibrosis by targeting EGR1[J]. Cell Cycle, 2019, 18: 1335-1348.
[70] Nagpal V, Rai R, Place AT, et al. MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis[J]. Circulation, 2016, 133: 291-301.
[71] Bie ZD, Sun LY, Geng CL, et al. MiR-125b regulates SFRP5 expression to promote growth and activation of cardiac fibroblasts[J]. Cell Biol Int, 2016, 40: 1224-1234.
[72] Seok HY, Chen J, Kataoka M, et al. Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy[J]. Circ Res, 2014, 114: 1585-1595.
[73] Zhang D, Cui Y, Li B, et al. MiR-155 regulates high glucose-induced cardiac fibrosis via the TGF-β signaling pathway[J]. Mol Biosyst, 2016, 13: 215-224.
[74] Duygu B, Poels EM, Juni R, et al. MiR-199b-5p is a regulator of left ventricular remodeling following myocardial infarction[J]. Noncoding RNA Res, 2017, 2: 18-26.
[75] Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure[J]. Circulation, 2011, 124: 1537-1547.
[76] Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J]. J Clin Invest, 2009, 119: 2772-2786.
[77] Ji Y, Qiu M, Shen Y, et al. MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload[J]. Int J Mol Med, 2018, 41: 1909-1916.
[78] Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of msc-derived exosomes: a systems view[J]. Sci Rep, 2018, 8: 1419.
[79] Chaturvedi P, Kalani A, Medina I, et al. Cardiosome mediated regulation of MMP9 in diabetic heart: role of miR29b and miR455 in exercise[J]. J Cell Mol Med, 2015, 19: 2153-2161.
[80] Yang J, Yu X, Xue F, et al. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk[J]. Am J Transl Res, 2018, 10: 4350-4366.
[81] Pan ZW, Yang BF. The role and molecular mechanisms of long noncoding RNAs in cardiac diseases[J]. Acta Pharm Sin (药学学报), 2020, 55: 773-780.
[82] Qu X, Song X, Yuan W, et al. Expression signature of lncRNAs and their potential roles in cardiac fibrosis of post-infarct mice[J]. Biosci Rep, 2016, 36: e00337.
[83] Zheng D, Zhang Y, Hu Y, et al. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy[J]. FEBS J, 2019, 286: 1645-1655.
[84] Sun J, Wang Z, Shi H, et al. LncRNA FAF inhibits fibrosis induced by angiotensinogen II via the TGFβ1-P-Smad2/3 signalling by targeting FGF9 in cardiac fibroblasts[J]. Biochem Biophys Res Commun, 2020, 521: 814-820.
[85] Huang ZW, Tian LH, Yang B, et al. Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis[J]. DNA Cell Biol, 2017, 36: 759-766.
[86] Huang S, Zhang L, Song J, et al. Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model[J]. J Cell Physiol, 2019, 234: 2997-3006.
[87] Zhang H, Ma J, Liu F, et al. Long non-coding RNA XIST promotes the proliferation of cardiac fibroblasts and the accumulation of extracellular matrix by sponging microRNA-155-5p[J]. Exp Ther Med, 2021, 21: 477.
[88] Yang F, Qin Y, Lv J, et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy[J]. Cell Death Dis, 2018, 9: 1000.
[89] Liang Y, Wang B, Huang H, et al. Silenced SOX2-OT alleviates ventricular arrhythmia associated with heart failure by inhibiting NLRP3 expression via regulating miR-2355-3p[J]. Immun Inflamm Dis, 2021, 9: 255-264.
[90] Yan M, Liu Q, Jiang Y, et al. Long noncoding RNA lnc_000898 alleviates cardiomyocyte apoptosis and promotes cardiac repair after myocardial infarction through modulating the miR-375/PDK1 axis[J]. J Cardiovasc Pharmacol, 2020, 76: 77-85.
[91] Yao L, Zhou B, You L, et al. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis[J]. Mol Biol Rep, 2020, 47: 2605-2617.
[92] Piccoli MT, Gupta SK, Viereck J, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction[J]. Circ Res, 2017, 121: 575-583.
[93] Choong OK, Chen CY, Zhang J, et al. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction[J]. Theranostics, 2019, 9: 6550-6567.
[94] Lai L, Xu Y, Kang L, et al. LncRNA Kcnq1ot1 contributes to cardiomyocyte apoptosis by targeting fus in heart failure[J]. Exp Mol Pathol, 2020, 115: 104480.
[95] Zhang F, Fu X, Kataoka M, et al. Long noncoding RNA Cfast regulates cardiac fibrosis[J]. Mol Ther Nucleic Acids, 2021, 23: 377-392.
[96] Tang R, Wang YC, Mei X, et al. LncRNA GAS5 attenuates fibroblast activation through inhibiting Smad3 signaling[J]. Am J Physiol Cell Physiol, 2020, 319: C105-C115.
[97] Li D, Zhang C, Li J, et al. Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD[J]. Aging (Albany NY), 2019, 11: 8792-8809.
[98] Luo S, Zhang M, Wu H, et al. SAIL: a new conserved anti-fibrotic lncRNA in the heart[J]. Basic Res Cardiol, 2021, 116: 15.
[99] Tao H, Zhang JG, Qin RH, et al. LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway[J]. Toxicology, 2017, 386: 11-18.
[100] Liu HL, Chen CH, Sun YJ. Overexpression of lncRNA GAS5 attenuates cardiac fibrosis through regulating PTEN/MMP-2 signal pathway in mice[J]. Eur Rev Med Pharmacol Sci, 2019, 23: 4414-4418.
[101] Tao H, Shi P, Zhao XD, et al. MeCP2 inactivation of lncRNA GAS5 triggers cardiac fibroblasts activation in cardiac fibrosis[J]. Cell Signal, 2020, 74: 109705.
[102] Hao K, Lei W, Wu H, et al. LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction[J]. Theranostics, 2019, 9: 7282-7297.
[103] Zhang Y, Zhang YY, Li TT, et al. Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice[J]. J Mol Cell Cardiol, 2018, 115: 64-72.
[104] Gong L, Zhu L, Yang T. Fendrr involves in the pathogenesis of cardiac fibrosis via regulating miR-106b/Smad3 axis[J]. Biochem Biophys Res Commun, 2020, 524: 169-177.
[105] Tao H, Cao W, Yang JJ, et al. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis[J]. Cardiovasc Pathol, 2016, 25: 381-389.
[106] Omura J, Habbout K, Shimauchi T, et al. Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension[J]. Circulation, 2020, 142: 1464-1484.
[107] Wang H, Song T, Zhao Y, et al. Long non-coding RNA LICPAR regulates atrial fibrosis via TGF-β/Smad pathway in atrial fibrillation[J]. Tissue Cell, 2020, 67: 101440.
[108] Che H, Wang Y, Li H, et al. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy[J]. FASEB J, 2020, 34: 5282-5298.
[109] Liu Y, Wang T, Zhang M, et al. Down-regulation of myocardial infarction associated transcript 1 improves myocardial ischemia-reperfusion injury in aged diabetic rats by inhibition of activation of NF-κB signaling pathway[J]. Chem Biol Interact, 2019, 300: 111-122.
[110] Wang X, Yong C, Yu K, et al. Long noncoding RNA (lncRNA) n379519 promotes cardiac fibrosis in post-infarct myocardium by targeting miR-30[J]. Med Sci Monit, 2018, 24: 3958-3965.
[111] Zhang SY, Huang SH, Gao SX, et al. Upregulation of lncRNA RMRP promotes the activation of cardiac fibroblasts by regulating miR613[J]. Mol Med Rep, 2019, 20: 3849-3857.
[112] Micheletti R, Plaisance I, Abraham BJ, et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling[J]. Sci Transl Med, 2017, 9: eaai9118.
[113] Wang Y, Cao X, Yan L, et al. Exosome-derived long non-coding RNA ZFAS1 controls cardiac fibrosis in chronic kidney disease[J]. Aging (Albany NY), 2021. DOI: 10.18632/aging.202599.
[114] Chen X, Ge W, Hu J, et al. Inhibition of prostaglandin E2 receptor 4 by lnc000908 to promote the endothelial-mesenchymal transition participation in cardiac remodelling[J]. J Cell Mol Med, 2019, 23: 6355-6367.
[115] Luo B, He Z, Huang S, et al. Long non-coding RNA 554 promotes cardiac fibrosis via TGF-β1 pathway in mice following myocardial infarction[J]. Front Pharmacol, 2020, 11: 585680.
[116] Zhuang Y, Li T, Li Z, et al. Involvement of lncR-30245 in myocardial infarction-induced cardiac fibrosis through peroxisome proliferator-activated receptor-gamma-mediated connective tissue growth factor signalling pathway[J]. Can J Cardiol, 2019, 35: 480-489.
[117] Jiang L, Wang X, Zhan X, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene X, 2020, 5: 100036.
[118] Yousefi F, Soltani BM. Circular RNAs as potential theranostics in the cardiac fibrosis[J]. Heart Fail Rev, 2021, 26: 195-203.
[119] Gu X, Jiang YN, Wang WJ, et al. Comprehensive circRNA expression profile and construction of circRNA-related ceRNA network in cardiac fibrosis[J]. Biomed Pharmacother, 2020, 125: 109944.
[120] Ni H, Li W, Zhuge Y, et al. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p[J]. Int J Cardiol, 2019, 292: 188-196.
[121] Wang W, Zhang S, Xu L, et al. Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice[J]. Diabetologia, 2021, 64: 681-692.
[122] Liu W, Wang Y, Qiu Z, et al. CircHIPK3 regulates cardiac fibroblast proliferation, migration and phenotypic switching through the miR-152-3p/TGF-β2 axis under hypoxia[J]. PeerJ, 2020, 8: e9796.
[123] Cheng N, Wang MY, Wu YB, et al. Circular RNA POSTN promotes myocardial infarction-induced myocardial injury and cardiac remodeling by regulating miR-96-5p/BNIP3 axis[J]. Front Cell Dev Biol, 2020, 8: 618574.
[124] Zhang L, Bian YF, Bai R, et al. Circ_ BMP2K enhances the regulatory effects of miR-455-3p on its target gene SUMO1 and thereby inhibits the activation of cardiac fibroblasts[J]. Biochem Cell Biol, 2020, 98: 583-590.
[125] Garikipati VNS, Verma SK, Cheng Z, et al. Circular RNA circFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun, 2019, 10: 4317.
[126] Wu N, Xu J, Du WW, et al. YAP circular RNA, circYap, attenuates cardiac fibrosis via binding with tropomyosin-4 and gamma-actin decreasing actin polymerization[J]. Mol Ther, 2021, 29: 1138-1150.
[127] Wang Y, Zhao R, Shen C, et al. Exosomal cirHIPK3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction[J]. Oxid Med Cell Longev, 2020, 2020: 8418407.
[128] Mester-Tonczar J, Winkler J, Einzinger P, et al. Association between circular RNA CDR1as and post-infarction cardiac function in pig ischemic heart failure: influence of the anti-fibrotic natural compounds bufalin and lycorine[J]. Biomolecules, 2020, 10: 1180.
[129] Sun LY, Zhao JC, Ge XM, et al. Circ_ LAS1L regulates cardiac fibroblast activation, growth, and migration through miR-125b/SFRP5 pathway[J]. Cell Biochem Funct, 2020, 38: 443-450.
[130] Gao Y, Liu Y, Fu Y, et al. The potential regulatory role of hsa_circ_0004104 in the persistency of atrial fibrillation by promoting cardiac fibrosis via TGF-β pathway[J]. BMC Cardiovasc Disord, 2021, 21: 25.
[131] Zhu Y, Pan W, Yang T, et al. Upregulation of circular RNA circNFIB attenuates cardiac fibrosis by sponging miR-433[J]. Front Genet, 2019, 10: 564.
[132] Li F, Long TY, Bi SS, et al. CircPAN3 exerts a profibrotic role via sponging miR-221 through FoxO3/ATG7-activated autophagy in a rat model of myocardial infarction[J]. Life Sci, 2020, 257: 118015.
[133] Wang Y, Li C, Zhao R, et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction[J]. Theranostics, 2021, 11: 6315-6333.
[134] Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1[J]. Biochem Biophys Res Commun, 2017, 487: 769-775.
[135] Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts[J]. Sci Rep, 2017, 7: 40342.
相关文献:
1.潘振伟, 杨宝峰.长链非编码RNA调节心脏疾病的作用与分子机制[J]. 药学学报, 2020,55(5): 773-780