药学学报, 2021, 56(11): 2900-2907
引用本文:
左鹤, 刘哲, 梅倩茹, 杨振华*, 屈静*. 干细胞及类器官在特发性肺纤维化修复和再生中的应用[J]. 药学学报, 2021, 56(11): 2900-2907.
ZUO He, LIU Zhe, MEI Qian-ru, YANG Zhen-hua*, QU Jing*. Application of stem cells and organoids in repair and regeneration of idiopathic pulmonary fibrosis[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 2900-2907.

干细胞及类器官在特发性肺纤维化修复和再生中的应用
左鹤, 刘哲, 梅倩茹, 杨振华*, 屈静*
华中科技大学同济基础医学院, 湖北 武汉 430030
摘要:
特发性肺纤维化 (idiopathic pulmonary fibrosis,IPF) 是一种不可逆转的、死亡率较高的间质性疾病,发病率在全世界范围内呈逐渐增长趋势,严重危害人类的健康,给社会带来巨大的经济负担。目前,传统的治疗方法虽然能够减缓疾病的进展,但是无法有效控制病情。临床上两种针对IPF的药物吡非尼酮和尼达尼布也存在较多的不良反应。因此,探求让纤维化逆转和肺再生的新方法显得至关重要。干细胞的修复和再生能力对于IPF的治疗具有独特的优势。近年来,由干细胞生成的肺类器官的出现让纤维化肺再生的研究进入了一个全新的阶段,其结构和功能类似于活体器官,与亲代细胞具有相似的遗传特性,在研究肺组织的发育过程以及药物实验方面发挥了巨大作用,尤其是在再生医学方面,为研究者提供了一个良好的体外模型。本综述主要对目前干细胞及类器官在IPF修复和再生中的作用进行总结,希望能为临床治疗IPF提供参考。
关键词:    特发性肺纤维化      修复      再生      类器官      干细胞     
Application of stem cells and organoids in repair and regeneration of idiopathic pulmonary fibrosis
ZUO He, LIU Zhe, MEI Qian-ru, YANG Zhen-hua*, QU Jing*
School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Abstract:
Idiopathic pulmonary fibrosis (IPF) is an irreversible and highly mortal interstitial disease. The incidence of IPF is increasing around the world, which seriously harms human health and brings huge economic burden to the society. While traditional treatments can slow the progression of the disease, they are far to cure this disease. Clinically, pirfenidone and nintedanib are two main drugs that used for the treatment of IPF. However, severe adverse reactions were reported in some patients. Therefore, it is very important to explore novel therapeutic strategies to reverse fibrosis and regenerate lung. The repair and regeneration ability of stem cells has unique advantages in the treatment of pulmonary fibrosis. The structure and function of organoids produced by stem cells have similar characteristics with live organs. Therefore, lung stem cells play an important role in the discovery of novel anti-IPF drugs, and in the formation and development of lung tissue. In addition, organoids produced by stem cells also serve as a perfect model for regenerative medicine. In this review, we mainly summarize the role of stem cells and organoids in the repair and regeneration of pulmonary fibrosis, and hope to provide a reference for the development of clinical treatment of pulmonary fibrosis.
Key words:    idiopathic pulmonary fibrosis    repair    regeneration    organoid    stem cell   
收稿日期: 2021-06-09
DOI: 10.16438/j.0513-4870.2021-0828
基金项目: 国家自然科学基金资助项目(81900067).
通讯作者: 杨振华,Tel:13545148826,E-mail:jingqu@hust.edu.cn;屈静,Tel:18008365026,E-mail:zhenhua@hust.edu.cn
Email: jingqu@hust.edu.cn;zhenhua@hust.edu.cn
相关功能
PDF(555KB) Free
打印本文
0
作者相关文章
左鹤  在本刊中的所有文章
刘哲  在本刊中的所有文章
梅倩茹  在本刊中的所有文章
杨振华*  在本刊中的所有文章
屈静*  在本刊中的所有文章

参考文献:
[1] Nalysnyk L, Cid-Ruzafa J, Rotella P, et al. Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature[J]. Eur Respir Rev, 2012, 21: 355-361.
[2] Weng D, Chen XQ, Qiu H, et al. The role of infection in acute exacerbation of idiopathic pulmonary fibrosis[J]. Eur Respir J, 2019, 2019: 5160694.
[3] Gui X, Qiu X, Xie M, et al. Prognostic value of serum osteopontin in acute exacerbation of idiopathic pulmonary fibrosis[J]. Biomed Res Int, 2020, 2020: 3424208.
[4] Richeldi L, Rubin AS, Avdeev S, et al. Idiopathic pulmonary fibrosis in BRIC countries: the cases of Brazil, Russia, India, and China[J]. BMC Med, 2015, 13: 237.
[5] Qu J, Yang SZ, Zhu Y, et al. Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice[J]. J Exp Med, 2021, 218: e20202033.
[6] Chen H, Qu J, Huang X, et al. Mechanosensing by the alpha6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis[J]. Nat Commun, 2016, 7: 12564.
[7] Wynn TA. Integrating mechanisms of pulmonary fibrosis[J]. J Exp Med, 2011, 208: 1339-1350.
[8] Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis[J]. Annu Rev Pathol, 2014, 9: 157-179.
[9] Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators[J]. J Clin Invest, 2012, 122: 2756-2762.
[10] Kasper M, Barth K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis[J]. Biosci Rep, 2017, 37: BSR20171301.
[11] Behr J. The diagnosis and treatment of idiopathic pulmonary fibrosis[J]. Dtsch Arztebl Int, 2013, 110: 875-881.
[12] Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011, 183: 788-824.
[13] Joannes A, Brayer S, Besnard V, et al. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310: L615-L629.
[14] Jain R, Barkauskas CE, Takeda N, et al. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung[J]. Nat Commun, 2015, 6: 6727.
[15] Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung[J]. J Clin Invest, 2013, 123: 3025-3036.
[16] Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer[J]. Nature, 2014, 507: 190-194.
[17] Cabrera-Benitez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition[J]. Crit Care Med, 2012, 40: 510-517.
[18] Wu H, Yu Y, Huang H, et al. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells[J]. Cell, 2020, 180: 107-121.e17.
[19] Riemondy KA, Jansing NL, Jiang P, et al. Single cell RNA sequencing identifies TGF-beta as a key regenerative cue following LPS-induced lung injury[J]. JCI Insight, 2019, 5: e123637.
[20] Barkauskas CE, Noble PW. Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis[J]. Am J Physiol Cell Physiol, 2014, 306: C987-C996.
[21] Johansson HM, Newman DR, Sannes PL. Whole-genome analysis of temporal gene expression during early transdifferentiation of human lung alveolar epithelial type 2 cells in vitro[J]. PLoS One, 2014, 9: e93413.
[22] Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis[J]. Cell Signal, 2020, 66: 109482.
[23] Serrano-Mollar A, Nacher M, Gay-Jordi G, et al. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis[J]. Am J Respir Crit Care Med, 2007, 176: 1261-1268.
[24] Zhang Z, Newton K, Kummerfeld SK, et al. Transcription factor Etv5 is essential for the maintenance of alveolar type II cells[J]. Proc Natl Acad Sci U S A, 2017, 114: 3903-3908.
[25] Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis[J]. N Engl J Med, 2018, 378: 1811-1823.
[26] Xu Y, Mizuno T, Sridharan A, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis[J]. JCI Insight, 2016, 1: e90558.
[27] Qu J, Zhu L, Zhou Z, et al. Reversing mechanoinductive DSP expression by CRISPR/dCas9-mediated epigenome editing[J]. Am J Respir Crit Care Med, 2018, 198: 599-609.
[28] Moore C, Blumhagen RZ, Yang IV, et al. Resequencing study confirms that host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2019, 200: 199-208.
[29] Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease[J]. J Clin Invest, 2018, 128: 64-73.
[30] Borok Z, Horie M, Flodby P, et al. Grp78 loss in epithelial progenitors reveals an age-linked role for endoplasmic reticulum stress in pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2020, 201: 198-211.
[31] Chilosi M, Carloni A, Rossi A, et al. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema[J]. Transl Res, 2013, 162: 156-173.
[32] Arish N, Petukhov D, Wallach-Dayan SB. The role of telomerase and telomeres in interstitial lung diseases: from molecules to clinical implications[J]. Int J Mol Sci, 2019, 20: 2996.
[33] Morla M, Busquets X, Pons J, et al. Telomere shortening in smokers with and without COPD[J]. Eur Respir J, 2006, 27: 525-528.
[34] Sheng G, Chen P, Wei Y, et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis[J]. Chest, 2020, 157: 1175-1187.
[35] Tian Y, Li H, Qiu T, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-kappaB activation[J]. Aging Cell, 2019, 18: e12858.
[36] Chen X, Xu H, Hou J, et al. Epithelial cell senescence induces pulmonary fibrosis through nanogmediated fibroblast activation[J]. Aging Cell, 2019, 12: 242-259.
[37] Lacanna R, Liccardo D, Zhang P, et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation[J]. J Clin Invest, 2019, 129: 2107-2122.
[38] Sun T, Huang Z, Zhang H, et al. TAZ is required for lung alveolar epithelial cell differentiation after injury[J]. JCI Insight, 2019, 5: e128674.
[39] Liu Z, Wu H, Jiang K, et al. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration[J]. Cell Rep, 2016, 16: 1810-1819.
[40] Zhou B, Flodby P, Luo J, et al. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis[J]. J Clin Invest, 2018, 128: 970-984.
[41] Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease[J]. J Biochem, 2011, 149: 121-130.
[42] Moura RS, Coutinho-Borges JP, Pacheco AP, et al. FGF signaling pathway in the developing chick lung: expression and inhibition studies[J]. PLoS One, 2011, 6: e17660.
[43] Yuan T, Volckaert T, Redente EF, et al. FGF10-FGFR2B signaling generates basal cells and drives alveolar epithelial regeneration by bronchial epithelial stem cells after lung injury[J]. Stem Cell Reports, 2019, 12: 1041-1055.
[44] Guzy RD, Stoilov I, Elton TJ, et al. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin[J]. Am J Respir Cell Mol Biol, 2015, 52: 116-128.
[45] Quantius J, Schmoldt C, Vazquez-Armendariz AI, et al. Influenza virus infects epithelial stem/progenitor cells of the distal lung: impact on fgfr2b-driven epithelial repair[J]. PLoS Pathog, 2016, 12: e1005544.
[46] Tong L, Bi J, Zhu X, et al. Keratinocyte growth factor-2 is protective in lipopolysaccharide-induced acute lung injury in rats[J]. Respir Physiol Neurobiol, 2014, 201: 7-14.
[47] Bi J, Tong L, Zhu X, et al. Keratinocyte growth factor-2 intratracheal instillation significantly attenuates ventilator-induced lung injury in rats[J]. J Cell Mol Med, 2014, 18: 1226-1235.
[48] Fang X, Wang L, Shi L, et al. Protective effects of keratinocyte growth factor-2 on ischemia-reperfusion-induced lung injury in rats[J]. Am J Respir Cell Mol Biol, 2014, 50: 1156-1165.
[49] Ringelhan M, O'connor T, Protzer U, et al. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets[J]. J Pathol, 2015, 235: 355-367.
[50] Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine[J]. Respiration, 2013, 85: 3-10.
[51] Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease[J]. Curr Top Dev Biol, 2014, 107: 207-233.
[52] Kumar PA, Hu Y, Yamamoto Y, et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection[J]. Cell, 2011, 147: 525-538.
[53] Vaughan AE, Brumwell AN, Xi Y, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury[J]. Nature, 2015, 517: 621-625.
[54] Zuo W, Zhang T, Wu DZ, et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration[J]. Nature, 2015, 517: 616-620.
[55] Yang Y, Riccio P, Schotsaert M, et al. Spatial-temporal lineage restrictions of embryonic p63(+) progenitors establish distinct stem cell pools in adult airways[J]. Dev Cell, 2018, 44: 752-761.e4.
[56] Shi Y, Dong M, Zhou Y, et al. Distal airway stem cells ameliorate bleomycin-induced pulmonary fibrosis in mice[J]. Stem Cell Res Ther, 2019, 10: 161.
[57] Zhao L, Wang X, Chang Q, et al. Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis[J]. Eur J Pharmacol, 2010, 627: 304-312.
[58] Arizmendi N, Puttagunta L, Chung KL, et al. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis[J]. BioMed Central, 2014, 15: 71.
[59] Dinh PC, Paudel D, Brochu H, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis[J]. Nat Commun, 2020, 11: 1064.
[60] Chu KA, Wang SY, Yeh CC, et al. Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly[J]. Theranostics, 2019, 9: 6646-6664.
[61] Clevers H. Modeling development and disease with organoids[J]. Cell, 2016, 165: 1586-1597.
[62] Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345: 1247125.
[63] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359: 920-926.
[64] Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173: 515-528.e17.
[65] Takasato M, Little MH. A strategy for generating kidney organoids: recapitulating the development in human pluripotent stem cells[J]. Dev Biol, 2016, 420: 210-220.
[66] Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney[J]. Nat Cell Biol, 2014, 16: 118-126.
[67] Mccauley KB, Hawkins F, Serra M, et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of wnt signaling[J]. Cell Stem Cell, 2017, 20: 844-857.e6.
[68] Jacob A, Morley M, Hawkins F, et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells[J]. Cell Stem Cell, 2017, 21: 472-488.e10.
[69] Chen YW, Huang SX, De Carvalho A, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells[J]. Nat Cell Biol, 2017, 19: 542-549.
[70] Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459: 262-265.
[71] Simian M, Hirai Y, Navre M. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells[J]. Development, 2001, 128: 3117-3131.
[72] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501: 373-379.
[73] Mccracken KW, Cata EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature, 2014, 516: 400-404.
[74] Dye BR, Hill DR, Ferguson MA, et al. In vitro generation of human pluripotent stem cell derived lung organoids[J]. Elife, 2015, 4: e05098.
[75] Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice[J]. Stem Cell Reports, 2014, 2: 662-674.
[76] Mandai M, Fujii M, Hashiguchi T, et al. IPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice[J]. Stem Cell Reports, 2017, 8: 69-83.
[77] Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell[J]. Nat Med, 2012, 18: 618-623.
[78] Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013, 494: 247-250.
[79] Taguchi A, Kaku Y, Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells[J]. Cell Stem Cell, 2014, 14: 53-67.
[80] Huch M, Gehart H, Van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160: 299-312.
[81] Barkauskas CE, Chung MI, Fioret B, et al. Lung organoids: current uses and future promise[J]. Development, 2017, 144: 986-997.
[82] Longmire TA, Ikonomou L, Hawkins F, et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells[J]. Cell Stem Cell, 2012, 10: 398-411.
[83] Huang SX, Islam MN, O'neill J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32: 84-91.
[84] Vazin T, Schaffer DV. Engineering strategies to emulate the stem cell niche[J]. Trends Biotechnol, 2010, 28: 117-124.
[85] Vaughan MB, Ramirez RD, Wright WE, et al. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells[J]. Differentiation, 2006, 74: 141-148.
[86] Green MD, Chen A, Nostro MC, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells[J]. Nat Biotechnol, 2011, 29: 267-272.
[87] Van Haute L, De Block G, Liebaers I, et al. Generation of lung epithelial-like tissue from human embryonic stem cells[J]. Respir Res, 2009, 10: 105.
[88] Tan Q, Choi KM, Sicard D, et al. Human airway organoid engineering as a step toward lung regeneration and disease modeling[J]. Biomaterials, 2017, 113: 118-132.
[89] Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids[J]. Elife, 2016, 5: e19732.
[90] Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro[J]. Nat Protoc, 2019, 14: 518-540.
[91] Nikolic MZ, Caritg O, Jeng Q, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids[J]. Elife, 2017, 6: e26575.
[92] Mcqualter JL, Yuen K, Williams B, et al. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung[J]. Proc Natl Acad Sci U S A, 2010, 107: 1414-1419.
[93] Tanaka Y, Yamaguchi M, Hirai S, et al. Characterization of distal airway stem-like cells expressing N-terminally truncated p63 and thyroid transcription factor-1 in the human lung[J]. Exp Cell Res, 2018, 372: 141-149.
[94] Chen H, Matsumoto K, Brockway BL, et al. Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury[J]. Stem Cells, 2012, 30: 1948-1960.
[95] Lee JH, Bhang DH, Beede A, et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis[J]. Cell, 2014, 156: 440-455.
[96] Shiraishi K, Shichino S, Ueha S, et al. Mesenchymal-epithelial interactome analysis reveals essential factors required for fibroblast-free alveolosphere formation[J]. iScience, 2019, 11: 318-333.
[97] Yamamoto Y, Gotoh S, Korogi Y, et al. Long-term expansion of alveolar stem cells derived from human IPS cells in organoids[J]. Nat Methods, 2017, 14: 1097-1106.
[98] Shiraishi K, Nakajima T, Shichino S, et al. In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblast-free spheroid culture[J]. Biochem Biophys Res Commun, 2019, 515: 579-585.
[99] Albert RK, Schwartz DA. Revealing the secrets of idiopathic pulmonary fibrosis[J]. N Engl J Med, 2019, 380: 94-96.
[100] Nureki SI, Tomer Y, Venosa A, et al. Expression of mutant sftpc in murine alveolar epithelia drives spontaneous lung fibrosis[J]. J Clin Invest, 2018, 128: 4008-4024.
[101] Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium[J]. Proc Natl Acad Sci U S A, 2009, 106: 12771-12775.
[102] Carrington R, Jordan S, Pitchford SC, et al. Use of animal models in IPF research[J]. Pulm Pharmacol Ther, 2018, 51: 73-78.
[103] Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18: 246-254.
相关文献:
1.陈渺, 申艳佳, 杨冉, 宋俊科, 李莉, 杜冠华.间充质干细胞源性外泌体应用于缺血性脑卒中后修复治疗研究进展[J]. 药学学报, 2020,55(10): 2306-2313
2.王珊, 李萍萍, 王晓良, 彭英.神经干细胞微环境在神经再生中的作用[J]. 药学学报, 2018,53(5): 684-690