药学学报, 2021, 56(11): 2934-2942
引用本文:
朱德伟, 余群, 沈云辉*. 非编码RNA介导肺纤维化的EMT进程及天然药物干预的研究进展[J]. 药学学报, 2021, 56(11): 2934-2942.
ZHU De-wei, YU Qun, SHEN Yun-hui*. Research advances of EMT progression of pulmonary fibrosis mediated by non-coding RNAs and natural medicines interventions[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 2934-2942.

非编码RNA介导肺纤维化的EMT进程及天然药物干预的研究进展
朱德伟, 余群, 沈云辉*
上海中医药大学中药学院, 上海 201203
摘要:
上皮间质转化 (epithelial mesenchymal transition,EMT) 是上皮细胞向间充质细胞转变的重编程过程。在这一过程中,上皮细胞失去其细胞极性和细胞间的黏附作用,获得类似于间充质细胞的更强的迁移和侵袭能力。在肺纤维化发病过程中,EMT是非常关键的步骤。部分肺上皮细胞通过EMT过程向肌成纤维细胞分化,促进肺纤维化发展。近年来,有大量研究表明非编码RNA (non-coding RNA,ncRNA) 参与了肺上皮细胞的EMT过程,同时一些天然药物可以通过干预肺纤维化相关ncRNA的方式,对肺纤维化起到预防和治疗作用。本文总结了肺纤维化EMT过程中ncRNA的表达情况、发挥的生物学功能以及天然药物介导EMT相关ncRNA影响肺纤维化的研究进展,旨在为ncRNA的研究与天然药物新作用靶点探究提供新的思路。
关键词:    肺纤维化      上皮间质转化      非编码RNA      天然药物      作用机制     
Research advances of EMT progression of pulmonary fibrosis mediated by non-coding RNAs and natural medicines interventions
ZHU De-wei, YU Qun, SHEN Yun-hui*
School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:
Epithelial mesenchymal transition (EMT) is a reprogramming process of epithelial to mesenchymal transition, in which epithelial cells lose polarity and intercellular adhesion and acquire stronger migration and invasion ability similar to mesenchymal cells. EMT is a critical step during the pathogenesis of pulmonary fibrosis. Lung epithelial cells can differentiate into myofibroblasts through EMT, which accelerates the fibrosis process. In recent years, a large number of studies have shown that non-coding RNAs (ncRNAs) are involved in the EMT process of lung epithelial cells, at the same time, some natural medicines were found to prevent and treat pulmonary fibrosis by intervening in ncRNAs related to pulmonary fibrosis. In this review, we summarize the expression change and biological function of vital ncRNAs in EMT progression during pulmonary fibrosis, as well as the research progress of EMT related ncRNA mediated by natural medicines on pulmonary fibrosis, aiming to provide new insights into the research of ncRNAs and the exploration of new pharmacological targets of natural medicine.
Key words:    pulmonary fibrosis    epithelial mesenchymal transition    non-coding RNA    natural medicine    mechanism   
收稿日期: 2021-06-30
DOI: 10.16438/j.0513-4870.2021-0971
基金项目: 国家中医药管理局中医药国际合作专项中医药国际化发展研究中心项目(GZYYGJ2020003);上海中医药大学预算内项目(2019GJ170).
通讯作者: 沈云辉,Tel:86-21-51323146,E-mail:bravesyh@163.com
Email: bravesyh@163.com
相关功能
PDF(936KB) Free
打印本文
0
作者相关文章
朱德伟  在本刊中的所有文章
余群  在本刊中的所有文章
沈云辉*  在本刊中的所有文章

参考文献:
[1] Li R, Cang QY, Chen LX, et al. Moxibustion potentiates skin absorption at acupoints of fibuli VI formula formula in EMT full perspective environment regulates endogenous Smad7 expression to inhibit TGF β in pulmonary fibrosis rats-β Experimental studies on signal transduction pathways[J]. Sichuan J Tradit Chin Med (四川中医), 2020, 38: 41-46.
[2] Yanagihara T, Chong SG, Vierhout M, et al. Current models of pulmonary fibrosis for future drug discovery efforts[J]. Expert Opin Drug Discov, 2020, 15: 931-941.
[3] George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy[J]. Lancet Respir Med, 2020, 8: 807-815.
[4] Parimon T, Yao C, Stripp BR, et al. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis[J]. Int J Mol Sci, 2020, 21: 2269.
[5] Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis[J]. J Clin Invest, 2002, 110: 341-350.
[6] Tanjore H, Xu XC, Polosukhin VV, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis[J]. Am J Respir Crit Care Med, 2009, 180: 657-665.
[7] Vancheri C. Idiopathic pulmonary fibrosis: an altered fibroblast proliferation linked to cancer biology[J]. Proc Am Thorac Soc, 2012, 9: 153-157.
[8] Castranova V, Rabovsky J, Tucker JH, et al. The alveolar type II epithelial cell: a multifunctional pneumocyte[J]. Toxicol Appl Pharmacol, 1988, 93: 472-483.
[9] Khan P, Fytianos K, Tamò L, et al. Culture of human alveolar epithelial type II cells by sprouting[J]. Respir Res, 2018, 19: 204.
[10] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73: 3852-3856.
[11] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495: 384-388.
[12] Borsani G, Tonlorenzi R, Simmler MC, et al. Characterization of a murine gene expressed from the inactive X chromosome[J]. Nature, 1991, 351: 325-329.
[13] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75: 843-854.
[14] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403: 901-906.
[15] Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2010, 182: 220-229.
[16] Huleihel L, Ben-Yehudah A, Milosevic J, et al. Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306: L534-L542.
[17] Liang H, Gu Y, Li T, et al. Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis[J]. Cell Death Dis, 2014, 5: e1238.
[18] Liang H, Liu S, Chen Y, et al. miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis: potential cross-talks among miRNAs in IPF[J]. J Mol Med (Berl), 2016, 94: 655-665.
[19] Wang YC, Liu JS, Tang HK, et al. miR-221 targets HMGA2 to inhibit bleomycin-induced pulmonary fibrosis by regulating TGF-β1/Smad3-induced EMT[J]. Int J Mol Med, 2016, 38: 1208-1216.
[20] Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis[J]. Am J Pathol, 2012, 180: 484-493.
[21] Cao Y, Liu Y, Ping F, et al. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/Smad3 signaling pathways[J]. Lab Invest, 2018, 98: 339-359.
[22] Stolzenburg LR, Wachtel S, Dang H, et al. miR-1343 attenuates pathways of fibrosis by targeting the TGF-β receptors[J]. Biochem J, 2016, 473: 245-256.
[23] Zhuang Y, Dai J, Wang Y, et al. miR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition[J]. Am J Transl Res, 2016, 8: 3206-3213.
[24] Guo R, Lv Y, Ouyang Y, et al. The role of miR-497/EIF3A axis in TGFβ1-induced epithelial-mesenchymal transition and extracellular matrix in rat alveolar epithelial cells and pulmonary fibroblasts[J]. J Cell Biochem, 2017, 118: 3401-3408.
[25] Yang ZC, Qu ZH, Yi MJ, et al. miR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma[J]. J Cell Physiol, 2019, 234: 8804-8814.
[26] Liu S, Chen X, Zhang S, et al. miR-106b-5p targeting SIX1 inhibits TGF-β1-induced pulmonary fibrosis and epithelial- mesenchymal transition in asthma through regulation of E2F1[J]. Int J Mol Med, 2021, 47: 04855.
[27] Gong L, Wu X, Li X, et al. S1PR3 deficiency alleviates radiation-induced pulmonary fibrosis through the regulation of epithelial-mesenchymal transition by targeting miR-495-3p[J]. J Cell Physiol, 2020, 235: 2310-2324.
[28] Tanwar VS, Zhang X, Jagannathan L, et al. Cadmium exposure upregulates SNAIL through miR-30 repression in human lung epithelial cells[J]. Toxicol Appl Pharmacol, 2019, 373: 1-9.
[29] Wang D, Liu Z, Yan Z, et al. miRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3β during radiation-induced pulmonary fibrosis[J]. Arch Biochem Biophys, 2021, 697: 108699.
[30] Li J, Pan C, Tang C, et al. miR-184 targets TP63 to block idiopathic pulmonary fibrosis by inhibiting proliferation and epithelial-mesenchymal transition of airway epithelial cells[J]. Lab Invest, 2021, 101: 142-154.
[31] Wang X, Wang J, Huang G, et al. miR-320a-3P alleviates the epithelial-mesenchymal transition of A549 cells by activation of STAT3/SMAD3 signaling in a pulmonary fibrosis model[J]. Mol Med Rep, 2021, 23: 357.
[32] Wang C, Song X, Li Y, et al. Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation[J]. PLoS One, 2013, 8: e70725.
[33] Qi Y, Zhao A, Yang P, et al. miR-34a-5p attenuates EMT through targeting SMAD4 in silica-induced pulmonary fibrosis[J]. J Cell Mol Med, 2020, 24: 12219-12224.
[34] Xiao K, He W, Guan W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury[J]. Cell Death Dis, 2020, 11: 863.
[35] Kuhn H, Zobel C, Vollert G, et al. High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects[J]. Exp Lung Res, 2019, 45: 167-174.
[36] Zhu Y, Wang J, Meng X, et al. A positive feedback loop promotes HIF-1α stability through miR-210-mediated suppression of RUNX3 in paraquat-induced EMT[J]. J Cell Mol Med, 2017, 21: 3529-3539.
[37] Wu CH, Hsiao YM, Yeh KT, et al. Upregulation of microRNA-4417 and its target genes contribute to nickel chloride-promoted lung epithelial cell fibrogenesis and tumorigenesis[J]. Sci Rep, 2017, 7: 15320.
[38] Liu Z, Liang X, Li X, et al. miRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN[J]. Toxicol Res (Camb), 2019, 8: 328-340.
[39] Zhou X, Li YJ, Gao SY, et al. Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21[J]. J Cell Mol Med, 2015, 19: 1103-1113.
[40] Yamamoto A, Kawami M, Konaka T, et al. Anticancer drug-induced epithelial-mesenchymal transition via p53/miR-34a axis in A549/ABCA3 cells[J]. J Pharm Pharm Sci, 2019, 22: 516-524.
[41] Takano M, Nekomoto C, Kawami M, et al. Role of miR-34a in TGF-β1- and drug-induced epithelial-mesenchymal transition in alveolar type II epithelial cells[J]. J Pharm Sci, 2017, 106: 2868-2872.
[42] Huang G, Zhang J, Qing G, et al. Downregulation of miR-483-5p inhibits TGF-β1-induced EMT by targeting RhoGDI1 in pulmonary fibrosis[J]. Mol Med Rep, 2021, 24: 538.
[43] Xiao X, Huang C, Zhao C, et al. Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition[J]. Arch Biochem Biophys, 2015, 566: 49-57.
[44] Sun H, Chen J, Qian W, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis[J]. J Cell Mol Med, 2016, 20: 1234-1246.
[45] Yildirim M, Oztay F, Kayalar O, et al. Effect of long noncoding RNAs on epithelial-mesenchymal transition in A549 cells and fibrotic human lungs[J]. J Cell Biochem, 2021, 122: 882-896.
[46] Yan W, Wu Q, Yao W, et al. miR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1[J]. Sci Rep, 2017, 7: 11313.
[47] Liu Y, Li Y, Xu Q, et al. Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864: 420-431.
[48] Qian W, Cai X, Qian Q, et al. lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p[J]. Cell Death Dis, 2019, 10: 129.
[49] Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition[J]. Aging (Albany NY), 2020, 12: 4322-4336.
[50] Zhan H, Chang X, Wang X, et al. lncRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF-β1 expression and epithelial-mesenchymal transition process[J]. Environ Toxicol, 2021, 36: 1099-1110.
[51] Li J, Jiang ZZ, Li YY, et al. lncRNA CHRF promotes TGF-β1 induced EMT in alveolar epithelial cells by inhibiting miR-146a up-regulating L1CAM expression[J]. Exp Lung Res, 2021, 47: 198-209.
[52] Yi H, Luo D, Xiao Y, et al. Knockdown of long non-coding RNA DLEU2 suppresses idiopathic pulmonary fibrosis by regulating the microRNA-369-3p/TRIM2 axis[J]. Int J Mol Med, 2021, 47: 80.
[53] Zhang Y, Yao XH, Wu Y, et al. lncRNA NEAT1 regulates pulmonary fibrosis through miR-9-5p and TGF-β signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24: 8483-8492.
[54] Liu Y, Lu FA, Wang L, et al. Long non-coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA-455-3p/SMAD3 axis[J]. Mol Med Rep, 2021, 23: 218.
[55] Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci, 2018, 166: 465-478.
[56] Qi F, Li Y, Yang X, et al. Hsa_circ_0044226 knockdown attenuates progression of pulmonary fibrosis by inhibiting CDC27[J]. Aging (Albany NY), 2020, 12: 14808-14818.
[57] Jiang R, Zhou Z, Liao Y, et al. The emerging roles of a novel CCCH-type zinc finger protein, ZC3H4, in silica-induced epithelial to mesenchymal transition[J]. Toxicol Lett, 2019, 307: 26-40.
[58] Zeng H, Gao H, Zhang M, et al. Atractylon treatment attenuates pulmonary fibrosis via regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an ovalbumin-induced asthma mouse model[J]. Inflammation, 2021. DOI: 10.1007/s10753-021-01463-6.
[59] Dong WW, Zhang YQ, Zhu XY, et al. Protective effects of hydrogen-rich saline against lipopolysaccharide-induced alveolar epithelial-to-mesenchymal transition and pulmonary fibrosis[J]. Med Sci Monit, 2017, 23: 2357-2364.
[60] Balbin OA, Malik R, Dhanasekaran SM, et al. The landscape of antisense gene expression in human cancers[J]. Genome Res, 2015, 25: 1068-1079.
[61] Liu H, He Y, Jiang Z, et al. Prodigiosin alleviates pulmonary fibrosis through inhibiting miRNA-410 and TGF-β1/ADAMTS-1 signaling pathway[J]. Cell Physiol Biochem, 2018, 49: 501-511.
[62] Wu Y, Niu Y, Leng J, et al. Benzo(a)pyrene regulated A549 cell migration, invasion and epithelial-mesenchymal transition by up-regulating long non-coding RNA linc00673[J]. Toxicol Lett, 2020, 320: 37-45.
[63] Nieto MA, Huang RY, Jackson RA, et al. EMT: 2016[J]. Cell, 2016, 166: 21-45.
[64] Raghu G, Rochwerg B, Zhang Y, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. an update of the 2011 Clinical Practice Guideline[J]. Am J Respir Crit Care Med, 2015, 192: e3-e19.
[65] Peng L, Wen L, Shi QF, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation[J]. Cell Death Dis, 2020, 11: 978.
[66] Wang L, Liu H, He Q, et al. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition[J]. Bioorg Med Chem, 2020, 28: 115663.
[67] Zhang Q, Gan C, Liu H, et al. Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis[J]. Phytother Res, 2020, 34: 2685-2696.
相关文献:
1.连一凯, 周卫东.外泌体及其携带的非编码RNA在多囊卵巢综合征发病机制及诊疗中的研究进展[J]. 药学学报, 2020,55(10): 2256-2263
2.单天姣, 孙健, 梁海海.细胞衰老与器官纤维化研究进展[J]. 药学学报, 2019,54(9): 1531-1537