药学学报, 2021, 56(11): 2957-2967
引用本文:
王璇, 徐泳, 罗子宸, 韩迪, 谢彤, 林丽丽, 徐建亚, 时晨, 单进军. 基于网络药理学探索桔梗治疗肺纤维化的作用机制[J]. 药学学报, 2021, 56(11): 2957-2967.
WANG Xuan, XU Yong, LUO Zi-chen, HAN Di, XIE Tong, LIN Li-li, XU Jian-ya, SHI Chen, SHAN Jin-jun. Mechanism of Platycodon grandiflorum in the treatment of pulmonary fibrosis based on network pharmacology[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 2957-2967.

基于网络药理学探索桔梗治疗肺纤维化的作用机制
王璇1, 徐泳1, 罗子宸1, 韩迪1, 谢彤1, 林丽丽1, 徐建亚1, 时晨1*, 单进军1,2*
1. 南京中医药大学中医儿科学研究所, 江苏省儿童呼吸疾病 (中医药) 重点实验室, 江苏 南京 210023;
2. 江苏省中药高效给药系统工程中心, 江苏 南京 210023
摘要:
基于网络药理学和动物实验研究桔梗抗肺纤维化的作用机制。通过TCMSP、Swiss Target Prediction等数据库预测桔梗的成分和作用靶点,并与通过GeneCards、OMIM、Disgenet、Drugbank数据库筛选出的肺纤维化的疾病靶点交集整合,获得桔梗治疗肺纤维化的潜在靶点。运用Cytoscape软件构建“药物-成分-靶点-疾病”的网络图和潜在靶点的相互作用关系,并联合String平台绘制PPI网络,同时进行拓扑学分析,基于R软件使用Bioconductor生物信息软件包对交集靶点进行GO和KEGG富集分析预测作用机制。采用动物实验对网络药理学分析结果进行验证,构建肺纤维化小鼠模型,进行病理染色、ELISA检测、肺功能检测、qRT-PCR及Western blot。桔梗8个潜在活性成分对应289个靶点,肺纤维化1 129个疾病靶点,得到药物-疾病共同靶点65个,GO富集分析共得到条目1 575个,KEGG富集分析得到146个条目,涉及磷脂酰肌醇3激酶-蛋白激酶B (PI3K-AKT) 信号通路、肿瘤坏死因子 (TNF) 信号通路、白细胞介素-17 (IL-17) 信号通路等。动物实验结果表明,桔梗能改善肺纤维化小鼠的肺部炎症及胶原沉积。Western blot结果显示,桔梗治疗肺纤维化小鼠后,PI3K-AKT信号通路相关蛋白p-PI3K、p-AKT表达呈剂量依赖性下调,p-AKT的下调抑制了P21的表达,提示桔梗可能通过调控PI3K-AKT通路相关蛋白表达影响细胞衰老治疗肺纤维化小鼠。本文运用网络药理学揭示了桔梗抗肺纤维化的作用靶点和通路并进行了相关验证,为深入探讨桔梗抗肺纤维化的作用机制提供了依据。
关键词:    桔梗      肺纤维化      网络药理学      PI3K-AKT      衰老     
Mechanism of Platycodon grandiflorum in the treatment of pulmonary fibrosis based on network pharmacology
WANG Xuan1, XU Yong1, LUO Zi-chen1, HAN Di1, XIE Tong1, LIN Li-li1, XU Jian-ya1, SHI Chen1*, SHAN Jin-jun1,2*
1. Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China;
2. Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
Abstract:
The mechanism of Platycodon grandiflorum in the treatment of pulmonary fibrosis was examined by integrated pharmacology network with animal experiment validation. Compositions and targets of Platycodon grandiflorum were collected utilizing databases such as TCMSP and Swiss Target Prediction, whereas pulmonary fibrosis targets were obtained using GeneCards, OMIM, Disgenet, and Drugbank databases. These datasets were merged in order to identify prospective Platycodon grandiflorum targets for the treatment of pulmonary fibrosis. The "drug-component-target-disease" network was constructed with Cytoscape software, and the interaction relationship between potential targets was produced; they were coupled with the String platform to create the PPI network while also doing topological analysis. Then, using R software and the Bioconductor biological information software package, we conduct GO and KEGG enrichment analysis to estimate the therapeutic mechanism. A mouse model of pulmonary fibrosis was constructed for pathological staining, ELISA, lung function, qRT-PCR, and Western blot to validate the results of the network pharmacology. There are 289 putative active components of Platycodon grandiflorum, and 1 129 disease targets for pulmonary fibrosis, for a total of 65 drug-compound-disease common targets. The GO enrichment analysis revealed 1 575 items, whereas the KEGG enrichment analysis yielded 146 entries. The phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway, the tumor necrosis factor (TNF) signaling system, and the interleukin-17 (IL-17) signaling pathway were enriched. In animal experiments, Platycodon grandiflorum was found to decrease lung inflammation and collagen deposition in mice with pulmonary fibrosis. According to Western blot results, the expression of PI3K-AKT signaling pathway-related proteins p-PI3K and p-AKT was down-regulated in a dose-dependent manner after Platycodon grandiflorum therapy of pulmonary fibrosis mice. When p-AKT was suppressed, P21 expression was reduced, indicating that Platycodon grandiflorum may control the expression of PI3K-AKT pathway-related proteins to alter cell senescence while treating mice with pulmonary fibrosis. This study uses network pharmacology to identify the targets and pathways of Platycodon grandiflorum against pulmonary fibrosis and conducts related animal experimental validation, providing a foundation for an in-depth discussion of the therapeutic mechanism of Platycodon grandiflorum against pulmonary fibrosis.
Key words:    Platycodon grandiflorum    pulmonary fibrosis    network pharmacology    PI3K-AKT    senescence   
收稿日期: 2021-06-24
DOI: 10.16438/j.0513-4870.2021-0932
基金项目: 国家自然科学基金资助项目(81774156);江苏省“六大人才高峰”高层次人才选拔培养资助项目(YY-022);江苏高校优势学科(中医学)建设工程资助项目(PAPD).
通讯作者: 时晨,Tel:86-25-85811329,E-mail:dfsjj@163.com;单进军,E-mail:chenshi_njucm@163.com
Email: dfsjj@163.com;chenshi_njucm@163.com
相关功能
PDF(8112KB) Free
打印本文
0
作者相关文章
王璇  在本刊中的所有文章
徐泳  在本刊中的所有文章
罗子宸  在本刊中的所有文章
韩迪  在本刊中的所有文章
谢彤  在本刊中的所有文章
林丽丽  在本刊中的所有文章
徐建亚  在本刊中的所有文章
时晨  在本刊中的所有文章
单进军  在本刊中的所有文章

参考文献:
[1] Upagupta C, Shimbori C, Alsilmi R, et al. Matrix abnormalities in pulmonary fibrosis[J]. Eur Respir Rev, 2018, 27: 148.
[2] Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study[J]. EBioMedicine, 2019, 40: 554-563.
[3] Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: a call to arms?[J]. Lancet Respir Med, 2020, 8: 750-752.
[4] Vancheri C, Kreuter M, Richeldi L, et al. Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the INJOURNEY Trial[J]. Am J Respir Crit Care Med, 2018, 197: 356-363.
[5] Lancaster LH, de Andrade JA, Zibrak JD, et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis[J]. Eur Respir Rev, 2017, 26: 170057.
[6] Glass DS, Grossfeld D, Renna HA, et al. Idiopathic pulmonary fibrosis: molecular mechanisms and potential treatment approaches[J]. Respir Investig, 2020, 58: 320-335.
[7] Huang YJ, Gong JN. The law on pulmonary atrophic lung disease and pulmonary fibrosis syndrome[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2016, 27: 1439-1441.
[8] Xu WC, Luo ZC, Xie T, et al. Advance in research on platycidonis radix and preliminary analysis of its quality marker prediction[J]. J Nanjing Univ Tradit Chin Med (南京中医药大学学报), 2021, 37: 294-302.
[9] Wang XY, Han L, Gan YH. Mechanism of total saponins of Platycodon grandiflorum against pulmonary fibrosis in rats[J]. Chin J Gerontol (中国老年学杂志), 2015, 35: 2957-2958.
[10] Hou HH, Su CC, Hong LL, et al. Platycodin D alleviates proliferation and extracellular matrix accumulation in TGF-beta1 induced pulmonary fibroblasts[J]. Bratisl Lek Listy, 2021, 122: 145-151.
[11] Li XJ, Xu HY. Network pharmacology and traditional Chinese medicine research[J]. Acta Pharm Sin (药学学报), 2018, 53: 1385-1386.
[12] Deng XH, Lin MY, Tan HM. Study on the quality standard of Platycodon grandiflorum standard decoction based on the characteristic map of high performance liquid phase[J]. Jiangxi J Tradit Chin Med (江西中医药), 2018, 49: 66-68.
[13] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Beijing: China Medical Science Press, 2020: 289.
[14] Yazaki M, Ito Y, Yamada M, et al. Oral ingestion of collagen hydrolysate leads to the transportation of highly concentrated Gly-Pro-Hyp and its hydrolyzed form of Pro-Hyp into the bloodstream and skin[J]. J Agric Food Chem, 2017, 65: 2315-2322.
[15] Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 8: 14532.
[16] Yang L, Fu WL, Zhu Y, et al. Tbeta4 suppresses lincRNA-p21-mediated hepatic apoptosis and fibrosis by inhibiting PI3K-AKT-NF-kappaB pathway[J]. Gene, 2020, 758: 144946.
[17] Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase[J]. Aging Cell, 2006, 5: 187-195.
[18] Leontieva OV, Blagosklonny MV. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion[J]. Cell Cycle, 2013, 12: 3063-3069.
[19] Meyer KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis[J]. Expert Rev Respir Med, 2017, 11: 343-359.
[20] Thannickal VJ, Toews GB, White ES, et al. Mechanisms of pulmonary fibrosis[J]. Annu Rev Med, 2004, 55: 395-417.
[21] Duggal S, Jailkhani N, Midha MK, et al. Defining the Akt1 interactome and its role in regulating the cell cycle[J]. Sci Rep, 2018, 8: 1303.
[22] Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis[J]. Antiviral Res, 2017, 143: 142-150.
[23] Dang T, Liou GY. Macrophage cytokines enhance cell proliferation of normal prostate epithelial cells through activation of ERK and Akt[J]. Sci Rep, 2018, 8: 7718.
[24] Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease[J]. Cytokine, 2018, 101: 26-32.
[25] Lee JH, Liu R, Li J, et al. EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation[J]. Mol Cell, 2018, 70: 197-210.
[26] Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170: 605-635.
[27] Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis[J]. Sci Rep, 2017, 7: 14272.
[28] Hettiarachchi SU, Li YH, Roy J, et al. Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models[J]. Sci Transl Med, 2020, 12: eaay3724.
[29] Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT[J]. Curr Opin Cell Biol, 2017, 45: 62-71.
[30] Noren HN, Evans MK. Techniques to induce and quantify cellular senescence[J]. J Vis Exp, 2017, (123): 55533.
[31] Waters DW, Blokland K, Pathinayake PS, et al. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315: L162-L172.
[32] Alvarez D, Cardenes N, Sellares J, et al. IPF lung fibroblasts have a senescent phenotype[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313: L1164-L1173.
相关文献:
1.单天姣, 孙健, 梁海海.细胞衰老与器官纤维化研究进展[J]. 药学学报, 2019,54(9): 1531-1537