药学学报, 2021, 56(11): 2968-2976
引用本文:
周青青, 吴燕萍, 栗原博, 李怡芳, 梁磊, 何蓉蓉. 柴胡疏肝散对情志应激致小鼠肝损伤的保护作用[J]. 药学学报, 2021, 56(11): 2968-2976.
ZHOU Qing-qing, WU Yan-ping, HIROSHI Kurihara, LI Yi-fang, LIANG Lei, HE Rong-rong. Protective effect of Chaihu Shugan San on emotional stress-induced liver injury[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 2968-2976.

柴胡疏肝散对情志应激致小鼠肝损伤的保护作用
周青青1,2, 吴燕萍1,2, 栗原博1,2, 李怡芳1,2, 梁磊1,2*, 何蓉蓉1,2*
1. 暨南大学药学院, 中药与天然药物研究所, 广东 广州 510632;
2. 暨南大学中医学院, 广东省疾病易感性与中医药研发工程技术研究中心, 广东 广州 510632
摘要:
“情志致病”是中医理论的重要组成部分,强烈的情志刺激会影响机体阴阳气血平衡,导致各种疾病的发生。柴胡疏肝散是治疗“肝气郁结”的经典名方,本研究旨在研究柴胡疏肝散对小鼠应激性肝损伤的保护作用及其可能的作用机制。实验方案经暨南大学动物实验伦理委员会批准,所有程序均严格按照动物使用和护理的伦理原则进行。实验采用急性拘束应激诱导小鼠急性肝损伤模型,使用柴胡疏肝散进行保护,检测小鼠肝损伤指标和脂质过氧化等相关指标。结果表明,柴胡疏肝散能显著改善急性拘束应激导致的小鼠肝损伤,降低血清谷丙转氨酶和谷草转氨酶水平,改善小鼠肝脏组织病理学状况和炎性浸润等情况。进一步检测脂质过氧化和生物节律因子,发现柴胡疏肝散可降低脂质过氧化产物丙二醛和4-羟基-壬烯醛的水平,同时增加谷胱甘肽的水平,改善急性拘束应激小鼠肝脏的氧化应激水平,还可以降低生物节律因子BMAL1 (brain and muscle Arnt-like protein-1) 的表达,改善急性拘束应激引起的节律变化。本研究表明,柴胡疏肝散对急性拘束应激所致肝损伤的保护作用可能与其改善脂质过氧化以及调控生物节律因子等有关,为阐明柴胡疏肝散的疏肝解郁作用的科学内涵提供了实验基础,为疏肝解郁中药/复方辅助治疗肝损伤的应用和推广提供了实验依据。
关键词:    柴胡疏肝散      拘束应激      肝损伤      脂质过氧化      BMAL1     
Protective effect of Chaihu Shugan San on emotional stress-induced liver injury
ZHOU Qing-qing1,2, WU Yan-ping1,2, HIROSHI Kurihara1,2, LI Yi-fang1,2, LIANG Lei1,2*, HE Rong-rong1,2*
1. Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China;
2. Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
Abstract:
Chaihu Shugan San (CHSGS), a classic traditional Chinese medicinal formula, has been widely used in clinics for emotional disease. Here the protective effect and possible mechanisms of Chaihu Shugan San in stress-induced liver injury were investigated. The animal experimental protocol has been reviewed and approved by Laboratory Animal Ethics Committee of Jinan University, in compliance with the Institutional Animal Care Guidelines. Mice were administered CHSGS for 7 days and subjected to 18-h acute stress before being killed. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels in serum were measured with commercial kits. Histomorphology of the liver was analyzed by hematoxylin-eosin staining and immunohistochemistry. Glutathione (GSH) content, 4-hydroxynonenal (4-HNE), brain and muscle Arnt-like protein-1 (BMAL1) and arachidonate 15-lipoxygenase (ALOX15) protein were detected by LC-MS and Western blot, respectively. The results showed that CHSGS ameliorated acute stress-induced liver damage by reducing ALT and AST levels in serum and inflammatory infiltration in liver tissue. Network pharmacology analysis showed that CHSGS was associated with lipid peroxidation. Further analysis confirmed that MDA and 4-HNE levels declined and GSH level increased in livers of stressed mice after CHSGS administration. CHSGS also lowered BMAL1 expression, a pivotal factor in circadian rhythm, in livers of stressed mice. In conclusion, CHSGS ameliorated stress-induced liver injury by repressing lipid peroxidation and regulating circadian rhythm. Our studies implicate that CHSGS is promising as a therapy for stress-induced liver injury, and lay foundation for designing novel prophylactic and therapeutic strategies for stress-induced liver injury.
Key words:    Chaihu Shugan San    restraint stress    liver injury    lipid peroxidation    BMAL1   
收稿日期: 2021-06-30
DOI: 10.16438/j.0513-4870.2021-0970
基金项目: 国家自然科学基金资助项目(81973718,82004231);广东省自然科学基金资助项目(2021A1515011297).
通讯作者: 梁磊,Tel:86-20-85227791,E-mail:rongronghe@jnu.edu.cn;何蓉蓉,E-mail:leiliang@jnu.edu.cn
Email: rongronghe@jnu.edu.cn;leiliang@jnu.edu.cn
相关功能
PDF(5154KB) Free
打印本文
0
作者相关文章
周青青  在本刊中的所有文章
吴燕萍  在本刊中的所有文章
栗原博  在本刊中的所有文章
李怡芳  在本刊中的所有文章
梁磊  在本刊中的所有文章
何蓉蓉  在本刊中的所有文章

参考文献:
[1] Zhu SR, Luo X, Li YF, et al. Emotional stress-induced Shanghuo syndrome increases disease susceptibility[J]. China J Chin Mater Med (中国中药杂志), 2018, 43: 1529-1535.
[2] Qin ZP, Zhao HH, Zhan XH. Research progress on the theory of rage impairing liver in modern times[J]. Chin Med Mod Dis Educ China (中国中医药现代远程教育), 2020, 18: 121-124.
[3] Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China[J]. Hepatology, 2014, 60: 2099-2108.
[4] Cheng F, Ma C, Wang X, et al. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced nonalcoholic fatty liver disease: a rat study[J]. BMC Complement Altern Med, 2017, 17: 203.
[5] He RR, Yao XS, Hiroshi K. The review on animal model of restraint stress[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2008, 11: 80-83.
[6] Tang SH. The Propective Effects of Schisandra Lignans Extract on Stressed-evoked Hepatic Injury and Metastases in Mice (五味子标准提取物对应激性肝损伤和肝癌转移的作用研究)[D]. Dalian: Dalian Medical University, 2010.
[7] Sha J, Feng X, Chen Y, et al. Dexmedetomidine improves acute stress-induced liver injury in rats by regulating MKP-1, inhibiting NF-kappaB pathway and cell apoptosis[J]. J Cell Physiol, 2019, 234: 14068-14078.
[8] Sanchez O, Arnau A, Pareja M, et al. Acute stress-induced tissue injury in mice: differences between emotional and social stress[J]. Cell Stress Chaperones, 2002, 7: 36-46.
[9] Zhou J, Huang F, Wu XJ. Research progress on anti-depression chemical consituents and pharmacological effects of Chaihushugan San[J]. Pharmacol Clin Chin Mater Med (中药药理与临床), 2019, 35: 174-179.
[10] He X. Chaihu Shugan Power in the treatment of liver-qi depression and spleen-deficiency function dyspepsia for 30 cases[J]. Chin Med Mod Dis Educ China (中国中医药现代远程教育), 2021, 19: 116-117.
[11] Cao YY, Chen Y, Zhou H, et al. Study on the mechanism of Chaihu Shugan San in treating acute pancreatitis based on network pharmacology[J]. Shananxi J Tradit Chin Med (陕西中医), 2020, 41: 994-998.
[12] Xie WN, Peng HB, Li Y, et al. Liver with liver stagnation and spleen deficiency syndrome and intestinal microflora[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2021, 27: 129-137.
[13] Li D, Jiang T, Fan H, et al. Influence of chaihushugan powder on lipid metabolism and liver function in nonalcoholic fatty liver rats[J]. Pharmacol Clin Chin Mater Med (中药药理与临床), 2013, 29: 8-12.
[14] Yu HM. The Inhibitory Effects and Mechanism of (+)-Clausenamide on Ferroptosis against APAP-induced Liver Injury ((+)-黄皮酰胺抑制ferroptosis保护APAP诱导的肝损伤作用及机制研究)[D]. Guangzhou: Jinan University, 2018.
[15] Melis M, Tang XH, Trasino SE, et al. Effects of AM80 compared to AC261066 in a high fat diet mouse model of liver disease[J]. PLoS One, 2019, 14: e0211071.
[16] Zhang W, Zhong W, Sun Q, et al. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice[J]. Sci Rep, 2017, 7: 8976.
[17] Mukherji A, Bailey SM, Staels B, et al. The circadian clock and liver function in health and disease[J]. J Hepatol, 2019, 71: 200-211.
[18] Zhou D, Wang Y, Chen L, et al. Evolving roles of circadian rhythms in liver homeostasis and pathology[J]. Oncotarget, 2016, 7: 8625-8639.
[19] Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases[J]. J Hepatol, 2013, 59: 160-168.
[20] Lazo M, Hernaez R, Bonekamp S, et al. Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study[J]. BMJ, 2011, 343: d6891.
[21] Joung JY, Cho JH, Kim YH, et al. A literature review for the mechanisms of stress-induced liver injury[J]. Brain Behav, 2019, 9: e01235.
[22] Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. Hepatology, 2009, 50: 261-274.
[23] Jia HM, Yu M, Ma LY, et al. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1064: 14-21.
[24] Kitamura H, Konno A, Morimatsu M, et al. Immobilization stress increases hepatic IL-6 expression in mice[J]. Biochem Biophys Res Commun, 1997, 238: 707-711.
[25] Tjandra K, Sharkey KA, Swain MG. Progressive development of a Th1-type hepatic cytokine profile in rats with experimental cholangitis[J]. Hepatology, 2000, 31: 280-290.
[26] Li S, Li H, Xu X, et al. Nanocarrier-mediated antioxidant delivery for liver diseases[J]. Theranostics, 2020, 10: 1262-1280.
[27] Zhou Y, Fan X, Jiao T, et al. SIRT6 as a key event linking P53 and NRF2 counteracts APAP-induced hepatotoxicity through inhibiting oxidative stress and promoting hepatocyte proliferation[J]. Acta Pharm Sin B, 2021, 11: 89-99.
[28] Samarghandian S, Azimi-Nezhad M, Farkhondeh T, et al. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney[J]. Biomed Pharmacother, 2017, 87: 223-229.
[29] Macdonald GA, Bridle KR, Ward PJ, et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3[J]. J Gastroenterol Hepatol, 2001, 16: 599-606.
[30] Chen H, Gan Q, Yang C, et al. A novel role of glutathione S-transferase A3 in inhibiting hepatic stellate cell activation and rat hepatic fibrosis[J]. J Transl Med, 2019, 17: 280.
[31] Martinez-Clemente M, Ferre N, Titos E, et al. Disruption of the 12/15-lipoxygenase gene (Alox15) protects hyperlipidemic mice from nonalcoholic fatty liver disease[J]. Hepatology, 2010, 52: 1980-1991.
[32] Tahara Y, Aoyama S, Shibata S. The mammalian circadian clock and its entrainment by stress and exercise[J]. J Physiol Sci, 2017, 67: 1-10.
[33] Ferrell JM, Chiang JY. Circadian rhythms in liver metabolism and disease[J]. Acta Pharm Sin B, 2015, 5: 113-122.
[34] Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock[J]. Cell, 2015, 161: 84-92.
[35] Sato K, Meng F, Francis H, et al. Melatonin and circadian rhythms in liver diseases: functional roles and potential therapies[J]. J Pineal Res, 2020, 68: e12639.
[36] Yang G, Zhang J, Jiang T, et al. Bmal1 deletion in myeloid cells attenuates atherosclerotic lesion development and restrains abdominal aortic aneurysm formation in hyperlipidemic mice[J]. Arterioscler Thromb Vasc Biol, 2020, 40: 1523-1532.
[37] Wang J, Li S, Li X, et al. Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression[J]. Cancer Cell Int, 2019, 19: 182.
[38] Barca-Mayo O, Boender AJ, Armirotti A, et al. Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice[J]. Glia, 2020, 68: 1131-1147.
[39] Zhang D, Tong X, Nelson BB, et al. The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting PPARalpha pathway[J]. Hepatology, 2018, 68: 883-896.
[40] Xu L, Yang TY, Zhou YW, et al. Bmal1 inhibits phenotypic transformation of hepatic stellate cells in liver fibrosis via IDH1/alpha-KG-mediated glycolysis[J]. Acta Pharmacol Sin, 2021. DOI: 10.1038/s41401-021-00658-9.
[41] Oshima T, Takenoshita S, Akaike M, et al. Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer[J]. Oncol Rep, 2011, 25: 1439-1446.
[42] Curtis AM, Bellet MM, Sassone-Corsi P, et al. Circadian clock proteins and immunity[J]. Immunity, 2014, 40: 178-186.
[43] Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock[J]. Trends Cell Biol, 2014, 24: 90-99.
[44] Dunlap JC. Molecular bases for circadian clocks[J]. Cell, 1999, 96: 271-290.
[45] Man AWC, Xia N, Li H. Circadian rhythm in adipose tissue: novel antioxidant target for metabolic and cardiovascular diseases[J]. Antioxidants (Basel), 2020, 9: 968.
[46] Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock[J]. Genes Dev, 2006, 20: 1868-1873.
[47] Teixeira KRC, Dos Santos CP, De Medeiros LA, et al. Night workers have lower levels of antioxidant defenses and higher levels of oxidative stress damage when compared to day workers[J]. Sci Rep, 2019, 9: 4455.
相关文献:
1.续洁琨;栗原博;郑洁静;江涛;姚新生.丹参酮类化合物对小鼠应激性肝损伤的保护作用[J]. 药学学报, 2006,41(7): 631-635
2.谈冶雄;李万亥;姚真真;姜远英;万兴旺;黄矛.依布硒啉对四氯化碳及内毒素+D-氨基半乳糖致肝损伤的保护作用[J]. 药学学报, 1999,34(2): 99-102