药学学报, 2021, 56(11): 2985-2994
引用本文:
杨挺, 陈馨霖, 祝小云, 项德娟, 罗建光*, 张浩*. 苦蘵睡茄内酯提取物下调YAP和TGF-β/Smad通路抑制肝星状细胞激活改善小鼠肝纤维化[J]. 药学学报, 2021, 56(11): 2985-2994.
YANG Ting, CHEN Xin-lin, ZHU Xiao-yun, XIANG De-juan, LUO Jian-guang*, ZHANG Hao*. The withanolide extract of Physalis angulata alleviates the liver fibrosis through regulation of YAP and TGF-β/Smad pathway[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 2985-2994.

苦蘵睡茄内酯提取物下调YAP和TGF-β/Smad通路抑制肝星状细胞激活改善小鼠肝纤维化
杨挺, 陈馨霖, 祝小云, 项德娟, 罗建光*, 张浩*
中国药科大学中药学院, 天然药物活性组分与药效国家重点实验室, 江苏省天然活性物质发现与研究重点实验室, 江苏 南京 211198
摘要:
肝纤维化是慢性肝损伤的常见瘢痕反应,细胞外基质的过度积累是其主要特征,其中肝星状细胞的过度激活是肝纤维化发生的关键步骤。苦蘵睡茄内酯提取物 (the withanolide extract of Physalis angulata, WEP) 是从中药苦蘵 (Physalis angulata L.) 中提取富集的部位,主要含有酸浆苦素型的睡茄内酯类化合物。本实验通过建立四氯化碳及胆总管结扎诱导的小鼠肝纤维化模型,以及转化生长因子β1 (transforming growth factor-β1,TGF-β1) 处理诱导的人肝星状细胞LX-2活化模型,结合不同浓度的WEP处理,研究WEP对肝纤维化的治疗作用,并探讨潜在的作用机制。本文中所有动物实验都获得中国药科大学伦理学委员会批准。动物实验结果显示,与模型组相比,WEP可降低血清中谷草转氨酶 (aspartate transaminase,AST) 和谷丙转氨酶 (alanine transaminase,ALT) 水平,减轻肝损伤,显著降低胶原沉积,改善肝纤维化水平。WEP对LX-2细胞无明显细胞毒性,但可显著降低肝纤维化标志物Ⅰ型胶原α1 (collagen type Ⅰ α 1 chain,COL1A1) 及α-平滑肌肌动蛋白 (α-smooth muscle actin,α-SMA) 的mRNA和蛋白表达,抑制肝星状细胞活化。在体内外模型中,WEP可抑制yes相关蛋白 (yes-associated protein,YAP) 的表达及Smad家族蛋白2 (Smad family member 2,Smad2) 的磷酸化水平。综上,WEP可通过下调YAP和TGF-β/Smad通路抑制肝星状细胞活化,在体内外表现出良好的抗肝纤维化活性。
关键词:    肝纤维化      肝星状细胞激活      苦蘵睡茄内酯提取物      TGF-β/Smad      YAP     
The withanolide extract of Physalis angulata alleviates the liver fibrosis through regulation of YAP and TGF-β/Smad pathway
YANG Ting, CHEN Xin-lin, ZHU Xiao-yun, XIANG De-juan, LUO Jian-guang*, ZHANG Hao*
Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Abstract:
Liver fibrosis is a common scarring response to virtually all forms of chronic liver injury and is characterized by excessive accumulation of extracellular matrix. Excessive activation of hepatic stellate cells (HSCs) is a key step in liver fibrogenesis. The withanolide extract of Physalis angulata (WEP) is a physalin-type withanolide enriched partition from Physalis angulata. In this study, liver fibrosis mice models were established by CCl4 and bile duct ligation (BDL) in vivo. Transforming growth factor-β1 (TGF-β1) was given in vitro to induce activation of human hepatic stellate cells LX-2 and treated with WEP at different concentrations. All animal experiments in this paper have been approved by the Ethics Committee of China Pharmaceutical University. The in vivo results showed that, compared with the CCl4 or BDL group, WEP could reduce collagen deposition and liver damage, and reduce the levels of aspartate transaminase (AST) and alanine transaminase (ALT) in serum. In vitro, WEP had no significant cytotoxicity to LX-2 cells, but significantly reduced the mRNA and protein expressions of fibrotic markers collagen type Ⅰ α 1 chain (COL1A1) and α-smooth muscle actin (α-SMA) and inhibited the activation of hepatic stellate cells. In addition, WEP inhibited the expression of yes-associated protein (YAP) and the phosphorylation level of Smad family member 2 (Smad2) in vivo and in vitro. In conclusion, WEP can inhibit hepatic stellate cells activation via regulating the YAP and TGF-β-Smad pathways, and shows promising anti-fibrosis activity in vitro and in vivo.
Key words:    liver fibrosis    HSC activation    the withanolide extract ofPhysalis angulate    TGF-β/Smad    YAP   
收稿日期: 2021-08-15
DOI: 10.16438/j.0513-4870.2021-1185
基金项目: 国家自然科学基金资助项目(82074068,81872889).
通讯作者: 罗建光,Tel:86-25-83271402,E-mail:luojg@cpu.edu.cn;张浩,E-mail:zhanghao@cpu.edu.cn
Email: luojg@cpu.edu.cn;zhanghao@cpu.edu.cn
相关功能
PDF(4557KB) Free
打印本文
0
作者相关文章
杨挺  在本刊中的所有文章
陈馨霖  在本刊中的所有文章
祝小云  在本刊中的所有文章
项德娟  在本刊中的所有文章
罗建光*  在本刊中的所有文章
张浩*  在本刊中的所有文章

参考文献:
[1] Bataller R, Brenner DA. Liver fibrosis[J]. J Clin Invest, 2005, 115: 209-218.
[2] Ge MX, Liu HT, Zhang N, et al. Costunolide represses hepatic fibrosis through WW domain-containing protein 2-mediated Notch3 degradation[J]. Br J Pharmacol, 2020, 177: 372-387.
[3] Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis[J]. Compr Physiol, 2013, 3: 1473-1492.
[4] Chung SI, Moon H, Ju HL, et al. Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model[J]. J Hepatol, 2016, 64: 618-627.
[5] Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics[J]. Gut, 2016, 65: 1895-1905.
[6] Friedman SL, Rockey DC, Bissell DM. Hepatic fibrosis 2006: report of the Third AASLD Single Topic Conference[J]. Hepatology, 2007, 45: 242-249.
[7] Zhang WD, Wang RF, Wu HM, et al. Research progress in drugs for anti-hepatic fibrosis[J]. Acta Pharm Sin (药学学报), 2018, 53: 667-675.
[8] Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18: 151-166.
[9] Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage[J]. Gastroenterology, 2008, 135: 642-659.
[10] Zhao SS, Shao RG, He HW. Potential targets for anti-liver fibrosis[J]. Acta Pharm Sin (药学学报), 2014, 49: 1365-1371.
[11] Fabregat I, Moreno-Caceres J, Sanchez A, et al. TGF-beta signalling and liver disease[J]. FEBS J, 2016, 283: 2219-2232.
[12] Wu X, Wu X, Ma Y, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis[J]. Nat Commun, 2016, 7: 13498.
[13] Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis[J]. Front Biosci, 2002, 7: d793-d807.
[14] Song L, Chen TY, Zhao XJ, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-beta1/Smads signalling[J]. Br J Pharmacol, 2019, 176: 1619-1634.
[15] Liu J, Kong D, Qiu J, et al. Praziquantel ameliorates CCl4-induced liver fibrosis in mice by inhibiting TGF-beta/Smad signalling via up-regulating Smad7 in hepatic stellate cells[J]. Br J Pharmacol, 2019, 176: 4666-4680.
[16] Cai X, Li Z, Zhang Q, et al. CXCL6-EGFR-induced Kupffer cells secrete TGF-beta1 promoting hepatic stellate cell activation via the SMAD2/BRD4/C-MYC/EZH2 pathway in liver fibrosis[J]. J Cell Mol Med, 2018, 22: 5050-5061.
[17] Koo JH, Lee HJ, Kim W, et al. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2[J]. Gastroenterology, 2016, 150: 181-193.e8.
[18] Xu T, Ni MM, Xing L, et al. NLRC5 regulates TGF-beta1-induced proliferation and activation of hepatic stellate cells during hepatic fibrosis[J]. Int J Biochem Cell Biol, 2016, 70: 92-104.
[19] Grannas K, Arngarden L, Lonn P, et al. Crosstalk between Hippo and TGFbeta: subcellular localization of YAP/TAZ/Smad complexes[J]. J Mol Biol, 2015, 427: 3407-3415.
[20] Hiemer SE, Szymaniak AD, Varelas X. The transcriptional regulators TAZ and YAP direct transforming growth factor beta-induced tumorigenic phenotypes in breast cancer cells[J]. J Biol Chem, 2014, 289: 13461-13474.
[21] Lee EH, Park KI, Kim KY, et al. Liquiritigenin inhibits hepatic fibrogenesis and TGF-beta1/Smad with Hippo/YAP signal[J]. Phytomedicine, 2019, 62: 152780.
[22] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China 2010 Edition[S]. Beijing: Chemical Industry Press, 2010: 337-338.
[23] Wu SJ, Ng LT, Chen CH, et al. Antihepatoma activity of Physalis angulata and P. peruviana extracts and their effects on apoptosis in human Hep G2 cells[J]. Life Sci, 2004, 74: 2061-2073.
[24] Shin JM, Lee KM, Lee HJ, et al. Physalin A regulates the Nrf2 pathway through ERK and p38 for induction of detoxifying enzymes[J]. BMC Complement Altern Med, 2019, 19: 101.
[25] Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-beta/Smad and YAP signaling[J]. Phytomedicine, 2020, 78: 153294.
[26] Zhang MH, Li J, Zhu XY, et al. Physalin B ameliorates nonalcoholic steatohepatitis by stimulating autophagy and NRF2 activation mediated improvement in oxidative stress[J]. Free Radic Biol Med, 2021, 164: 1-12.
[27] Zhu X, Ye S, Yu D, et al. Physalin B attenuates liver fibrosis via suppressing LAP2alpha-HDAC1-mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation[J]. Br J Pharmacol, 2021, 178: 3428-3447.
[28] Noguchi S, Saito A, Nagase T. YAP/TAZ signaling as a molecular link between fibrosis and cancer[J]. Int J Mol Sci, 2018, 19: 3674.
[29] Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis[J]. Annu Rev Pathol, 2011, 6: 425-456.
[30] Friedman SL, Sheppard D, Duffield JS, et al. Therapy for fibrotic diseases: nearing the starting line[J]. Sci Transl Med, 2013, 5: 167sr161.
[31] Yang YK, Xie SD, Xu WX, et al. Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity[J]. Fitoterapia, 2016, 112: 144-152.
[32] Helvaci S, Kokdil G, Kawai M, et al. Antimicrobial activity of the extracts and physalin D from Physalis alkekengi and evaluation of antioxidant potential of physalin D[J]. Pharm Biol, 2010, 48: 142-150.
[33] Ji L, Yuan Y, Luo L, et al. Physalins with anti-inflammatory activity are present in Physalis alkekengi var. franchetii and can function as Michael reaction acceptors[J]. Steroids, 2012, 77: 441-447.
[34] Xu F, Liu C, Zhou D, et al. TGF-beta/Smad pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64: 157-167.
[35] Dewidar B, Meyer C, Dooley S, et al. TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8: 1419.
[36] Hata A, Chen YG. TGF-beta signaling from receptors to Smads[J]. Cold Spring Harb Perspect Biol, 2016, 8: a022061.
[37] Derynck R, Budi EH. Specificity, versatility, and control of TGF-beta family signaling[J]. Sci Signal, 2019, 12: eaav5183.
[38] Zhang YE. Mechanistic insight into contextual TGF-beta signaling[J]. Curr Opin Cell Biol, 2018, 51: 1-7.
[39] Huynh LK, Hipolito CJ, Ten Dijke P. A perspective on the development of TGF-beta inhibitors for cancer treatment[J]. Biomolecules, 2019, 9: 743.
[40] Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer[J]. Trends Cancer, 2017, 3: 56-71.
[41] Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease[J]. Nat Rev Drug Discov, 2012, 11: 790-811.
[42] Mannaerts I, Leite SB, Verhulst S, et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation[J]. J Hepatol, 2015, 63: 679-688.
[43] Swiderska-Syn M, Xie G, Michelotti GA, et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver[J]. Hepatology, 2016, 64: 232-244.
[44] Williams EJ, Gaca MD, Brigstock DR, et al. Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells[J]. J Hepatol, 2000, 32: 754-761.
[45] Pefani DE, Pankova D, Abraham AG, et al. TGF-beta targets the Hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2 nuclear translocation[J]. Mol Cell, 2016, 63: 156-166.
[46] Fujii M, Toyoda T, Nakanishi H, et al. TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth[J]. J Exp Med, 2012, 209: 479-494.
相关文献:
1.牛伟晓, 陈明华, 张娜, 葛茂旭, 鲍云洋, 司书毅, 邵荣光, 何红伟.Pepstatin Pr通过YAP-TGFβ-Smad通路发挥体外抗肝纤维化作用[J]. 药学学报, 2019,54(1): 89-94