药学学报, 2021, 56(11): 3047-3059
引用本文:
柯仲成, 孙银宇, 程小玲, 张振海, 王欢, 李长江, 贾晓斌. 基于改善抗肿瘤药物疗效的聚合物混合胶束研究进展[J]. 药学学报, 2021, 56(11): 3047-3059.
KE Zhong-cheng, SUN Yin-yu, CHENG Xiao-ling, ZHANG Zhen-hai, WANG Huan, Li Chang-jiang, JIA Xiao-bin. Research progress of polymer mixed micelles based on improving the efficacy of antitumor drugs[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 3047-3059.

基于改善抗肿瘤药物疗效的聚合物混合胶束研究进展
柯仲成1, 孙银宇1, 程小玲2, 张振海1, 王欢1, 李长江1*, 贾晓斌3*
1. 黄山学院, 中药功效与健康技术研究中心, 安徽 黄山 245041;
2. 黄山市屯溪区卫生监督所, 安徽 黄山 245000;
3. 中国药科大学中药学院, 江苏 南京 211198
摘要:
聚合物胶束已成为一种很有潜力的药物载体,然而部分单聚合物胶束往往存在一些性能缺陷,如载药量偏低、稳定性不佳和微环境响应能力弱等。采用两种或两种以上高分子聚合物自组装形成的混合聚合物胶束是解决这些问题的有效方法。本文尝试从聚合物混合胶束的分子间作用力、制备表征、性能优势和生物活性等方面进行综述,展示聚合物混合胶束的优势,分析存在的问题和不足,希望为抗肿瘤纳米胶束的发展提供借鉴。
关键词:    混合聚合物胶束      单聚合物胶束      抗肿瘤      载体材料     
Research progress of polymer mixed micelles based on improving the efficacy of antitumor drugs
KE Zhong-cheng1, SUN Yin-yu1, CHENG Xiao-ling2, ZHANG Zhen-hai1, WANG Huan1, Li Chang-jiang1*, JIA Xiao-bin3*
1. Research Center of Chinese Medicine Efficacy and Health Technology, Huangshan University, Huangshan 245041, China;
2. Health Supervision Institute of Tunxi, Huangshan 245000, China;
3. College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
Abstract:
Polymeric micelles have become a potential drug carrier. However, some single-copolymer micelles often have some performance defects, such as low drug loading, poor stability and weak response to microenvironment. Mixed micelles self-assembled from two or more dissimilar macromolecular polymers provides a direct and convenient approach to improve drug delivery. This paper attempts to review the internal force, preparation and characterization, performance advantages and biological activity of mixed polymer micelles, aims to show the advantages of polymer mixed micelles, analyzes the problems and shortcomings, and hopes to provide reference for the development of anti-tumor nano-micelles.
Key words:    mixed micelle    single-copolymer micelle    anti-tumor    carrier material   
收稿日期: 2021-03-22
DOI: 10.16438/j.0513-4870.2021-0413
基金项目: 国家自然科学基金资助项目(81573620);安徽省自然科学基金面上项目(20080805MH269);安徽教育厅省级教学研究团队(2020jxtd250);安徽省教育厅教学研究重点项目(2020jyxm1766);安徽省教育厅自然科学研究一般项目(KJHS2019B07);国家级大学生创新创业训练项目(202010375037).
通讯作者: 李长江,Tel/Fax:86-559-2546612,E-mail:licj@hsu.edu.cn;贾晓斌,E-mail:jiaxiaobin2015@163.com
Email: licj@hsu.edu.cn;jiaxiaobin2015@163.com
相关功能
PDF(1194KB) Free
打印本文
0
作者相关文章
柯仲成  在本刊中的所有文章
孙银宇  在本刊中的所有文章
程小玲  在本刊中的所有文章
张振海  在本刊中的所有文章
王欢  在本刊中的所有文章
李长江  在本刊中的所有文章
贾晓斌  在本刊中的所有文章

参考文献:
[1] Jin IS, Jo MJ, Park CW, et al. Physicochemical, pharmacokinetic, and toxicity evaluation of Soluplus ® polymeric micelles encapsulating fenbendazole[J]. Pharmaceutics, 2020, 12: 1000.
[2] Binkhathlan Z, Ali R, Qamar W, et al. Pharmacokinetics of orally administered poly(ethylene oxide)-block-poly(ε-caprolactone) micelles of cyclosporine A in rats: comparison with Neoral[J]. J Pharm Pharm Sci, 2018, 21: 177-191.
[3] Ahmed TA, El-Say KM, Ahmed OA, et al. Superiority of TPGS-loaded micelles in the brain delivery of vinpocetine via administration of thermosensitive intranasal gel[J]. Int J Nanomedicine, 2019, 14: 5555-5567.
[4] Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution[J]. Biomaterials, 2005, 26: 7251-7259.
[5] Raza K, Kumar N, Misra C, et al. Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile[J]. Int J Biol Macromol, 2016, 88: 206-212.
[6] Wu J, Li Y, Liu X, et al. 3,5,4'-Trimethoxy-trans-stilbene loaded PEG-PE micelles for the treatment of colon cancer[J]. Int J Nanomedicine, 2019, 14: 7489-7502.
[7] Hou J, Wang J, Sun E, et al. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers[J]. Drug Deliv, 2016, 23: 3248-3256.
[8] Jin Y, Wu Z, Li C, et al. Optimization of weight ratio for DSPE-PEG/TPGS hybrid micelles to improve drug retention and tumor penetration[J]. Pharm Res, 2018, 35: 13.
[9] Bernabeu E, Gonzalez L, Cagel M, et al. Novel Soluplus-TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines[J]. Colloids Surf B Biointerf, 2016, 140: 403-411.
[10] Liu M, Luo X, Qiu Q, et al. Redox-and pH-sensitive glycan (polysialic acid) derivatives and F127 mixed micelles for tumor-targeted drug delivery[J]. Mol Pharm, 2018, 15: 5534-5545.
[11] Lin M, Dai Y, Xia F, et al. Advances in non-covalent crosslinked polymer micelles for biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2020, 119: 111626.
[12] Manjappa AS, Kumbhar PS, Disouza J, et al. Polymeric mixed micelles: improving the anticancer efficacy of single-copolymer micelles[J]. Crit Rev Ther Drug Carrier Syst, 2019, 36: 1-58.
[13] Kanade R, Boche M, Pokharkar V. Self-assembling raloxifene loaded mixed micelles: formulation optimization, in vitro cytotoxicity and in vivo pharmacokinetics[J]. AAPS PharmSciTech, 2017, 19: 1105-1115.
[14] Wang X, Gao Y. Effects of length and unsaturation of the alkyl chain on the hydrophobic binding of curcumin with Tween micelles[J]. Food Chem, 2018, 246: 242-248.
[15] Guo R, Li K, Qin J, et al. Development of polycationic micelles as an efficient delivery system of antibiotics overcoming biological barriers to reverse multidrug resistance in Escherichia coli[J]. Nanoscale, 2020, 12: 11251-11266.
[16] Guo Z, Ke Z, Rong L, et al. pH-sensitive polymeric micelles assembled by stereocomplexation between PLLA-b-PLys and PDLA-b-mPEG for drug delivery[J]. J Mater Chem B, 2019, 7: 334-345.
[17] Liu Y, Xu C, Fan X, et al. Preparation of mixed micelles carrying folates and stable radicals through PLA stereocomplexation for drug delivery[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110464.
[18] Xu Y, Li G, Zhuang W, et al. Micelles prepared from poly (nisopropylacrylamide-co-tetraphenylethene acrylate)-b-poly[oligo (ethylene glycol)methacrylate] double hydrophilic block copolymer as hydrophilic drug carrier[J]. J Mater Chem B, 2018, 6: 7495-7502.
[19] Li J, Du Y, Su H, et al. Interfacial properties and micellization of triblock poly (ethylene glycol)-poly(ε-caprolactone)-polyethyleneimine copolymers[J]. Acta Pharm Sin B, 2020, 10: 1122-1133.
[20] Ge Y, Zhao Y, Li L, et al. Preparation of sodium cholate-based micelles through non-covalent bonding interaction and application as oral delivery systems for paclitaxel[J]. Drug Deliv, 2016, 23: 2555-2565.
[21] Lin T, Zhu T, Xun Y, et al. A novel drug delivery system of mixed micelles based on poly (ethylene glycol)-poly (lactide) and poly(ethylene glycol)-poly (ε-caprolactone) for gambogenic acid[J]. Kaohsiung J Med Sci, 2019, 35: 757-764.
[22] Tonglairoum P, Woraphatphadung T, Ngawhirunpat T, et al. Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment[J]. Pharm Dev Technol, 2017, 22: 184-190.
[23] Yang L, Ghzaoui AE, Li S. In vitro degradation behavior of poly(lactide)-poly(ethylene glycol) block copolymer micelles in aqueous solution[J]. Int J Pharm, 2010, 400: 96-103.
[24] Zhao J, Xu Y, Wang C, et al. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy[J]. Drug Dev Ind Pharm, 2017, 43: 1197-1204.
[25] Weng W, Wang Q, Wei C, et al. Mixed micelles for enhanced oral bioavailability and hypolipidemic effect of liquiritin: preparation, in vitro and in vivo evaluation[J]. Drug Dev Ind Pharm, 2021, 47: 308-318.
[26] Pellosi DS, Calori IR, de Paula LB, et al. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of verteporfin in cancer cells[J]. Mater Sci Eng C Mater Biol Appl, 2017, 71: 1-9.
[27] Fares AR, Elmeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study[J]. Drug Deliv, 2018, 25: 132-142.
[28] Younes NF, Abdel-Halim SA, Elassasy AI. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization[J]. Drug Deliv, 2018, 25: 1706-1717.
[29] Elsaid Z, Taylor KMG, Puri S, et al. Mixed micelles of lipoic acid-chitosan-poly (ethylene glycol) and distearoylphosphatidylethanolamine-poly(ethylene glycol) for tumor delivery[J]. Eur J Pharm Sci, 2017, 101: 228-242.
[30] Wiradharma N, Zhang Y, Venkataraman S, et al. Self-assembled polymer nanostructures for delivery of anticancer therapeutics[J]. Nano Today, 2009, 4: 302-317.
[31] Wilhelm S, Tavares AJ, Qin D, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016, 1: 16014.
[32] Fang C, Shi B, Pei Y, et al. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size[J]. Eur J Pharm Sci, 2006, 27: 27-36.
[33] Yu Y, Qiu L. Optimizing particle size of docetaxel-loaded micelles for enhanced treatment of oral epidermoid carcinoma[J]. Nanomedicine, 2016, 12: 1941-1949.
[34] Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat Nanotechnol, 2011, 6: 815-823.
[35] Mikhail AS, Eetezadi S, Ekdawi SN, et al. Image-based analysis of the size- and time-dependent penetration of polymeric micelles in multicellular tumor spheroids and tumor xenografts[J]. Int J Pharm, 2014, 464: 168-177.
[36] Li JF, Gao MY, Wang HM, et al. Optimization and in vitro characterization of resveratrol-loaded poloxamer 403/407 mixed micelles[J]. Acta Pharm Sin (药学学报), 2015, 50: 1045-1051.
[37] Huang X, Liao W, Gang Z, et al. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release[J]. Int J Nanomedicine, 2017, 12: 2215-2226.
[38] Dong K, Yan Y, Wang P, et al. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance[J]. Int J Nanomedicine, 2016, 11: 5109-5123.
[39] Ke Z, Yang L, Wu H, et al. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles[J]. Int J Pharm, 2018, 545: 306-317.
[40] Wang Y, Ding Y, Zhao J, et al. Dihydroartemisinin and doxorubicin co-loaded Soluplus-TPGS mixed micelles: formulation characterization, cellular uptake, and pharmacodynamic studies[J]. Pharm Dev Technol, 2019, 24: 1125-1132.
[41] Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery[J]. Mol Pharm, 2018, 15: 571-584.
[42] Cagel M, Bernabeu E, Gonzalez L, et al. Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil[J]. Biomed Pharmacother, 2017, 95: 894-903.
[43] Ding Y, Wang C, Wang Y, et al. Development and evaluation of a novel drug delivery: Soluplus/TPGS mixed micelles loaded with piperine in vitro and in vivo[J]. Drug Dev Ind Pharm, 2018, 44: 1409-1416.
[44] Piazzini V, Landucci E, Urru M, et al. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: in vitro and in vivo evaluation[J]. Int J Pharm, 2020, 583: 119361.
[45] Xiong X, Pan X, Tao L, et al. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel[J]. Int J Biol Macromol, 2017, 103: 1011-1018.
[46] Jung H, Mok H. Mixed micelles for targeted and efficient doxorubicin delivery to multidrug-resistant breast cancer cells[J]. Macromol Biosci, 2016, 16: 748-758.
[47] Ding J, Sun Y, Li J, et al. Enhanced blood brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider[J]. J Drug Target, 2017, 25: 532-540.
[48] Wang Y, Ke X, Voo Z, et al. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B[J]. Acta Biomater, 2016, 46: 211-220.
[49] Zhang J, Zhao X, Chen Q, et al. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance[J]. Acta Biomater, 2017, 50: 381-395.
[50] Yu A, Lv J, Yuan F, et al. mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus[J]. Int J Nanomedicine, 2017, 12: 8353-8362.
[51] Liu Y, Wu J, Huang L, et al. Synergistic effects of antitumor efficacy via mixed nano-size micelles of multifunctional Bletilla striata polysaccharide-based copolymer and D-α-tocopheryl polyethylene glycol succinate[J]. Int J Biol Macromol, 2020, 154: 499-510.
[52] Sun C, Li W, Ma P, et al. Development of TPGS/F127/F68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity[J]. Food Chem Toxicol, 2020, 137: 111126.
[53] Sun Y, Li Y, Shen Y, et al. Enhanced oral delivery and anti-gastroesophageal reflux activity of curcumin by binary mixed micelles[J]. Drug Dev Ind Pharm, 2019, 45: 1444-1450.
[54] Patra A, Satpathy S, Shenoy AK, et al. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers[J]. Int J Nanomedicine, 2018, 13: 2869-2881.
[55] Du X, Yin S, Zhou F, et al. Reduction-sensitive mixed micelles for selective intracellular drug delivery to tumor cells and reversal of multidrug resistance[J]. Int J Pharm, 2018, 550: 1-13.
[56] Wei C, Wang Q, Weng W, et al. The characterisation, pharmacokinetic and tissue distribution studies of TPGS modified myricetrin mixed micelles in rats[J]. J Microencapsul, 2019, 36: 278-290.
[57] Liu B, Gao W, Wu H, et al. New PTX-HS15/T80 mixed micelles: cytotoxicity, pharmacokinetics and tissue distribution[J]. AAPS PharmSciTech, 2021, 22: 56.
[58] Dou J, Zhang H, Liu X, et al. Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration[J]. Colloids Surf B Biointerfaces, 2014, 114: 20-27.
[59] Dahmani F, Yang H, Zhou J, et al. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: preparation, in vitro and in vivo evaluation[J]. Eur J Pharm Sci, 2012, 47: 179-189.
[60] Baidya D, Kushwaha J, Mahadik K, et al. Chrysie-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells[J]. Drug Dev Ind Pharm, 2019, 45: 852-860.
[61] Hao J, Tong T, Jin K, et al. Folic acid-functionalized drug delivery platform of resveratrol based on Pluronic 127/D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles[J]. Int J Nanomedicine, 2017, 12: 2279-2292.
[62] Li Y, Fu Y, Guo H, et al. Preparation and characterization of the ion-fixed mixed micelles with superior stability[J]. Int J Pharm, 2015, 489: 268-276.
[63] Lai P, Hsu C, Liu T, et al. Mixed micelles from methoxypoly(ethylene glycol)-polylactide and methoxy poly(ethylene glycol)-poly(sebacic anhydride) copolymers as drug carriers[J]. React Funct Polym, 2012, 72: 846-855.
[64] Chen Y, Feng S, Liu W, et al. Vitamin E succinate-grafted-chitosan oligosaccharide/ RGD-conjugated TPGS mixed micelles loaded with paclitaxel for U87MG tumor therapy[J]. Mol Pharm, 2017, 14: 1190-1203.
[65] Jin Y, Zhang Z, Zhao T, et al. Mixed micelles of doxorubicin overcome multidrug resistance by inhibiting the expression of P-glycoprotein[J]. J Biomed Nanotechnol, 2015, 11: 1330-1338.
[66] Jiang C, Wang H, Zhang X, et al. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy[J]. Int J Pharm, 2014, 475: 60-68.
[67] Zhang N, Xu C, Li N, et al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation[J]. Drug Deliv, 2018, 25: 1182-1191.
[68] Cao X, Zhou X, Wang Y, et al. Diblock- and triblock-copolymer based mixed micelles with high tumor penetration in vitro and in vivo[J]. J Mater Chem B, 2016, 4: 3216-3224.
[69] Yan H, Song J, Jia X, et al. Hyaluronic acid-modified didecyldimethylammonium bromide/ d-a-tocopheryl polyethylene glycol succinate mixedmicelles for delivery of baohuoside I against non-small cell lung cancer: in vitro and in vivo evaluation[J]. Drug Deliv, 2017, 24: 30-39.
[70] Tian Y, Mi G, Chen Q, et al. Acid-induced activated cell penetrating peptide modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism[J]. ACS Appl Mater Interfaces, 2018, 10: 43411-43428.
[71] Zhang P, He W, Zhang H, et al. Multifunctional mixed micelles for efficient docetaxol delivery for cancer therapy[J]. ChemPlusChem, 2016, 81: 1237-1244.
[72] Zhao D, Zhang H, Yang S, et al. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: an efficient drug delivery system for overcoming multidrug resistance[J]. Int J Pharm, 2016, 515: 281-292.
[73] Butt AM, Mohd Amin MC, Katas H. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs[J]. Int J Nanomedicine, 2015, 10: 1321-1334.
[74] Yuan Z, Yuan Y, Han L, et al. Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer[J]. Int J Nanomedicine, 2018, 13: 7533-7548.
[75] Zhou X, Qin X, Gong T, et al. D-Fructose modification enhanced internalization of mixed micelles in breast cancer cells via GLUT5 transporters[J]. Macromol Biosci, 2017, 17: 1600529.
[76] Zhang X, Zhang X, Yu P, et al. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system[J]. J Pharm Sci, 2013, 102: 145-153.
[77] Wu J, Tian G, Yu W, et al. pH-responsive hyaluronic acid-based mixed micelles for the hepatoma-targeting delivery of doxorubicin[J]. Int J Mol Sci, 2016, 17: 364.
[78] Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles[J]. J Control Release, 2004, 96: 273-283.
[79] Chen Q, Long M, Qiu L, et al. Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin[J]. Int J Nanomedicine, 2016, 11: 5415-5427.
[80] Zhang W, Shi Y, Chen Y, et al. Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors[J]. Biomaterials, 2011, 32: 2894-2906.
[81] Kim D, Lee ES, Park K, et al. Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor[J]. Pharm Res, 2008, 25: 2074-2082.
[82] Katekar R, Thombre G, Riyazuddin M, et al. Pharmacokinetics and brain targeting of trans-resveratrol loaded mixed micelles in rats following intravenous administration[J]. Pharm Dev Technol, 2020, 25: 300-307.
[83] Liang H, Yang Q, Deng L, et al. Phospholipid-Tween 80 mixed micelles as an intravenous delivery carrier for paclitaxel[J]. Drug Dev Ind Pharm, 2011, 37: 597-605.
[84] Ke Z, Zhang Z, Wu H, et al. Optimization and evaluation of oridonin-loaded Soluplus®-Pluronic P105 mixed micelles for oral administration[J]. Int J Pharm, 2017, 518: 193-202.
[85] Guan Y, Su Y, Zhao L, et al. Biodegradable polyurethane micelles with pH and reduction responsive properties for intracellular drug delivery[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 1221-1230.
[86] Li S, Wu W, Xiu K, et al. Doxorubicin loaded pH-responsive micelles capable of rapid intracellular drug release for potential tumor therapy[J]. J Biomed Nanotechnol, 2014, 10: 1480-1489.
[87] Vicent M, Duncan R. Polymer conjugates: nanosized medicines for treating cancer[J]. Trends Biotechnol, 2006, 24: 39-47.
[88] Podaralla S, Averineni R, Alqahtani M, et al. Synthesis of novel biodegradable methoxy poly (ethylene glycol)-zein micelles for effective delivery of curcumin[J]. Mol Pharm, 2012, 9: 2778-2286.
[89] Garg SM, Vakili MR, Lavasanifar A. Polymeric micelles based on poly(ethylene oxide) and α-carbon substituted poly(ε-caprolactone): an in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity[J]. Colloids Surf B Biointerfaces, 2015, 132: 161-170.
[90] Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer[J]. Br J Cancer, 2004, 90: 2085-2091.
[91] Valle JW, Armstrong A, Newman C, et al. A phase 2 study of SP1049C, doxorubicin in p-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction[J]. Invest New Drugs, 2010, 29: 1029-1037.
[92] Hao DL, Wang J, Xie R, et al. pH responsive docetaxel micelles with improved therapeutic efficacy on mice xenograft tumor[J]. Acta Pharm Sin (药学学报), 2020, 55: 1914-1922.