药学学报, 2021, 56(11): 3060-3073
引用本文:
李聪, 范垂众, 闫鑫杨, 高新, 赖晓雪, 宋艳志, 刘欣荣, 邓意辉*. 唾液酸结合受体——令人瞩目的肿瘤治疗靶标[J]. 药学学报, 2021, 56(11): 3060-3073.
LI Cong, FAN Chui-zhong, YAN Xin-yang, GAO Xin, LAI Xiao-xue, SONG Yan-zhi, LIU Xin-rong, DENG Yi-hui*. Sialic acid binding receptors—impressive targets for tumor treatment[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 3060-3073.

唾液酸结合受体——令人瞩目的肿瘤治疗靶标
李聪, 范垂众, 闫鑫杨, 高新, 赖晓雪, 宋艳志, 刘欣荣, 邓意辉*
沈阳药科大学药学院, 辽宁 沈阳 110016
摘要:
在肿瘤发展的各个阶段普遍存在着糖基化异常,其中唾液酸 (sialic acid,SA) 修饰聚糖在不同类型的肿瘤细胞表面显著高表达,这些高度唾液酸化的肿瘤细胞通过与外周免疫细胞或内皮细胞上的SA结合受体唾液酸结合性免疫球蛋白样凝集素 (sialic acid binding immunoglobulin-like lectins,Siglecs) 或选择素 (selectins) 相互作用,促进肿瘤免疫抑制环境的形成并帮助肿瘤细胞获得转移潜能。因此,针对Siglecs或selectins与其配体间相互作用的肿瘤治疗策略正受到研究者们的广泛关注,这些治疗策略主要包括靶向SA结合受体的特异性抗体吉妥珠单抗 (Mylotarg) 或聚糖类物质、SA及其衍生物修饰的纳米药物递送系统等。本文综述了Siglecs或selectins参与的促进肿瘤发展和转移过程的具体机制,以及靶向SA结合受体的肿瘤治疗策略,并对这些治疗策略进行了理性评价与反思。
关键词:    唾液酸      免疫学受体      肿瘤      特异性抗体      聚糖类物质      药物递送系统     
Sialic acid binding receptors—impressive targets for tumor treatment
LI Cong, FAN Chui-zhong, YAN Xin-yang, GAO Xin, LAI Xiao-xue, SONG Yan-zhi, LIU Xin-rong, DENG Yi-hui*
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
Abstract:
Glycosylation abnormalities are common in all stages of tumor development, and sialic acid (SA) modified polysaccharides have been found highly expressed on many different types of tumor cells. These highly sialylated tumor cells promote the formation of tumor immunosuppressive environment and help tumor cells gain metastatic potential by interacting with SA binding receptors Siglecs/selectins expressed on peripheral immune cells or endothelial cells. Related theoretical studies have promoted the development of tumor therapeutic strategies by targeting SA-binding receptors, mainly including specific antibodies trastuzumab (Mylotarg) or polysaccharides that block the interaction between Siglecs/selectins and its ligands, as well as nano-based drug delivery systems modified with SA and its derivatives. This article reviews the specific mechanisms of how SA-binding receptor Siglecs/selectins-mediated interactions contribute to tumor development and metastasis, and tumor therapeutic strategies by targeting SA-binding receptors, as well as makes a rational evaluation and reflection on these therapeutic strategies.
Key words:    sialic acid    immunologic receptor    neoplasm    anti-idiotypic antibody    glycosaminoglycan    drug delivery system   
收稿日期: 2021-04-13
DOI: 10.16438/j.0513-4870.2021-0543
基金项目: 国家自然科学基金资助项目(81973271).
通讯作者: 邓意辉,Tel:86-24-43520552,E-mail:pharmdeng@gmail.com
Email: pharmdeng@gmail.com
相关功能
PDF(2806KB) Free
打印本文
0
作者相关文章
李聪  在本刊中的所有文章
范垂众  在本刊中的所有文章
闫鑫杨  在本刊中的所有文章
高新  在本刊中的所有文章
赖晓雪  在本刊中的所有文章
宋艳志  在本刊中的所有文章
刘欣荣  在本刊中的所有文章
邓意辉*  在本刊中的所有文章

参考文献:
[1] Blix G, Svennerholm L, Werner IM, et al. The isolation of chondrosamine from gangliosides and from submaxillary mucin[J]. Acta Chem Scand, 1952, 6: 358-362.
[2] Schauer R, Kamerling JP. Exploration of the sialic acid world[J]. Adv Carbohyd Chem Biochem, 2018, 75: 1-213.
[3] Zhou X, Yang G, Guan F. Biological functions and analytical strategies of sialic acids in tumor[J]. Cell, 2020, 9: 273.
[4] Van DE, Wall S, Santegoets KCM, et al. Sialoglycans and siglecs can shape the tumor immune microenvironment[J]. Trends Immunol, 2020, 41: 274-285.
[5] Szabo R, Skropeta D. Advancement of sialyltransferase inhibitors: therapeutic challenges and opportunities[J]. Med Res Rev, 2017, 37: 219-270.
[6] Quentin H, Cedric S, Stephan VG. A cartography of Siglecs and sialyltransferases in gynecologic malignancies: is there a road towards a sweet future[J]. Front Oncol, 2018, 8: 68.
[7] Gabius HJ. Tumor lectinology: at the intersection of carbohydrate chemistry, biochemistry, cell biology, and oncology[J]. Angew Chem Int Edit, 1988, 27: 1267-1276.
[8] Pearce OMT, Heinz L. Sialic acids in cancer biology and immunity[J]. Glycobiology, 2016, 26: 111-128.
[9] Boligan KF, Mesa C, Fernandez LE, et al. Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense[J]. Cell Mol Life Sci, 2015, 72: 1231-1248.
[10] Emily R, Matthew M. Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities[J]. Cancers, 2018, 10: 207.
[11] Brown GD, Willment J. C-Type lectins in immunity and homeostasis[J]. Nat Rev Immunol, 2018, 18: 374-389.
[12] Ding D, Yao Y, Zhang S, et al. C-Type lectins facilitate tumor metastasis[J]. Oncol Lett, 2017, 13: 13-21.
[13] Stanczak MA,Siddiqui SS, Trefny MP, et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells[J]. J Clin Invest, 2018, 128: 4912-4923.
[14] Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease[J]. Nat Rev Immunol, 2014, 14: 653-666.
[15] Daly J, Carlsten M, O'Dwyer M. Sugar free: novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer[J]. Front Immunol, 2019, 10: 1047.
[16] Barthel SR, Gavino JD, Descheny L, et al. Targeting selectins and selectin ligands in inflammation and cancer[J]. Expert Opin Ther Targets, 2007, 11: 1473-1491.
[17] Häuselmann I, Roblek M, Protsyuk D, et al. Monocyte induction of E-selectin–mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade[J]. Cancer Res, 2016, 76: 5302-5312.
[18] Li SS, Carman KMI, Matthew YHT, et al. Sialyl Lewisx-P-selectin cascade mediates tumor–mesothelial adhesion in ascitic fluid shear flow[J]. Nat Commun, 2019, 10: 2406.
[19] Shalapour S, Karin M. Immunity, inflammation, andcancer: an eternal fight between good and evil[J]. J Clin Invest, 2015, 125: 3347-3355.
[20] Ding J, Zhao D, Hu Y, et al. Terminating the renewal of tumor-associated macrophages: a sialic acid-based targeted delivery strategy for cancer immunotherapy[J]. Int J Pharm, 2019, 571: 118706.
[21] Natoni A, Macauley MS, O'dwyer ME. Targeting selectins and their ligands in cancer[J]. Front Oncol, 2016, 6: 93.
[22] Adams OJ, Stanczak MA, Von Gunten S, et al. Targeting sialic acid–Siglec interactions to reverse immune suppression in cancer[J]. Glycobiology, 2018, 28: 640-647.
[23] Powell DL, Varki A. I-type lectins[J]. J Biol Chem, 1995, 270: 14243-14246.
[24] Bornhöfft KF, Goldammer T, Rebl A, et al. Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins[J]. Dev Comp Immunol, 2018, 86: 219-231.
[25] Angata T. Possible influences of endogenous and exogenous ligands on the evolution of human Siglecs[J]. Front Immunol, 2018, 9: 2885.
[26] Walter RB, Raden BW, Zeng R, et al. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2[J]. J Leukocyte Biol, 2008, 83: 200-211.
[27] Crocker PR, Redelinghuys P. Siglecs as positive and negative regulators of the immune system[J]. Biochem Soc Trans, 2008, 36: 1467-1471.
[28] Ali SR, Fong JJ, Carlin AF, et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B streptococcus[J]. J Exp Med, 2014, 211: 1231-1242.
[29] Crunkhorn S. Inflammation: Siglec-targeting nanoparticle treats sepsis[J]. Nat Rev Drug Discov, 2015, 14: 750.
[30] Angata T, Margulies EH, Green ED, et al. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms[J]. Proc Natl Acad Sci U S A, 2004, 101: 13251-13256.
[31] Fraschilla I, Pillai S. Viewing Siglecs through the lens of tumor immunology[J]. Immunol Rev, 2017, 276: 178-191.
[32] Angata T. Associations of genetic polymorphisms of Siglecs with human diseases[J]. Glycobiology, 2014, 24: 785-793.
[33] Fehervari Z. Targeting cancer by siglecs[J]. Nat Immunol, 2018, 19: 1148.
[34] Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease[J]. Annu Rev Immunol, 2020, 38: 365-395.
[35] Morishita M, Takahashi Y, Nishikawa M, et al. Pharmacokinetics of exosomes—an important factor for elucidating the biological roles of exosomes and for the development of exosome-based therapeutics[J]. J Pharm Sci, 2017, 106: 2265-2269.
[36] Chen WC, Sigal DS, Saven A, et al. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD22[J]. Leuk Lymphoma, 2012, 53: 208-210.
[37] Herrmann H, Cerny-Reiterer S, Gleixner KV, et al. CD34+/CD38- stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin[J]. Haematologica, 2011, 97: 219-226.
[38] Ikehara Y, Ikehara SK, Paulson JC. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9[J]. J Biol Chem, 2004, 279: 43117-43125.
[39] Nicoll G, Ni J, Liu D, et al. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes[J]. J Biol Chem, 1999, 274: 34089-34095.
[40] Siddiqui S, Schwarz F, Springer S, et al. Studies on the detection, expression, glycosylation, dimerization, and ligand binding properties of mouse Siglec-E[J]. J Biol Chem, 2017, 292: 1029-1037.
[41] Mcmillan SJ, Sharma RS, Mckenzie EJ, et al. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent signaling[J]. Blood, 2013, 121: 2084-2094.
[42] Beatson R, Tajadura-Ortega V, Achkova D, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9[J]. Nat Immunol, 2016, 17: 1273-1281.
[43] Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572: 392-396.
[44] Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25: 656-666.
[45] Engblom C, Pfirschke C, Zilionis R, et al. Osteoblasts remotely supply lung tumors with cancer-promoting Siglec Fhigh neutrophils[J]. Science, 2017, 358: 5081.
[46] Tedder TF, Steeber DA, Chen A, et al. The selectins: vascular adhesion molecules[J]. FASEB J, 1995, 9: 866-873.
[47] Ley K. The role of selectins in inflammation and disease[J]. Trends Mol Med, 2003, 9: 263-268.
[48] Patel KD, Cuvelier SL, Wiehler S. Selectins: critical mediators of leukocyte recruitment[J]. Semin Immunol, 2002, 14: 73-81.
[49] Ehrhardt C, Kneuer C, Bakowsky U. Selectins-an emerging target for drug delivery[J]. Adv Drug Deliv Rev, 2004, 56: 527-549.
[50] Lubor B. Selectins in cancer immunity[J]. Glycobiology, 2018, 28: 648-655.
[51] Cagnoni AJ, Pérez SJM, Rabinovich GA, et al. Turning-off signaling by Siglecs, selectins and galectins: chemical inhibition of glycan-dependent interactions in cancer[J]. Front Oncol, 2016, 6: 109.
[52] Korniluk A, Kamińska J, Kiszo P, et al. Lectin adhesion proteins (P-, L- and E-selectins) as biomarkers in colorectal cancer[J]. Biomarkers, 2017, 22: 629-634.
[53] Läubli H, Borsig L. Selectins promote tumor metastasis[J]. Semin Cancer Biol, 2010, 20: 169-177.
[54] Lai XX, Wang S, Yan XY, et al. Strategies and reflections on platelet-based targeted therapy for tumor[J]. Acta Pharm Sin (药学学报), 2021, 56: 1025-1034.
[55] Mezouar S, Frère C, Darbousset R, et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences[J]. Thromb Res, 2016, 139: 65-76.
[56] Becker KA, Beckmann N, Adams C, et al. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets[J]. Clin Exp Metastas, 2017, 34: 25-35.
[57] Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis[J]. Proc Natl Acad Sci U S A, 2001, 98: 3352-3357.
[58] Ferber S, Tiram G, Sousa-Herves A, et al. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome[J]. eLife, 2017, 6: 1-34.
[59] Carrascal MA, Silva M, Ramalho JS, et al. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation and ERK1/2 and p38 MAPK activation[J]. Mol Oncol, 2018, 12: 579-593.
[60] Esposito M, Mondal N, Greco TM, et al. Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis[J]. Nat Cell Biol, 2019, 21: 627-639.
[61] Mohammadalipour A, Showalter C, Muturi HT, et al. Cell membrane cholesterol modulates lung cancer cell adhesion and rolling on E-selectin[J]. Cancer Res, 2018, 78: 98.
[62] Liubomirski Y, Lerrer S, Meshel T, et al. Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer[J]. Front Immunol, 2019, 10: 757.
[63] Paget S. The distribution of secondary growths in cancer of the breast[J]. Cancer Metast Rev, 1989, 8: 98-101.
[64] Han T, Chen Y, Zhai D. Research progress of natural polysaccharides and their nano-sized drug delivery systems in regulating tumor microenvironment[J]. Acta Pharm Sin (药学学报), 2021. DOI: 10.16438/j.0513-4870.2019-0396.
[65] Cellars NJ, Lanier AL, Burdick MM. Breast and colon cancer cells express L-selectin ligands that interact with L-selectin on white blood cells under flow conditions[J]. Cancer Res, 2019, 79: 63.
[66] Ivetic A, Green HLH, Hart SJ. L-selectin: a major regulator of leukocyte adhesion, migration and signaling[J]. Front Immunol, 2019, 10: 1068.
[67] Laubli H, Borsig L. Heparins attenuate cancer metastasis: are selectins the link[J]. Cancer Invest, 2010, 27: 474-481.
[68] Rzeniewicz K, Newe A, Rey Gallardo A, et al. L-selectin shedding is activated specifically within transmigrating pseudopods of monocytes to regulate cell polarity in vitro[J]. Proc Natl Acad Sci U S A, 2015, 112: 1461-1470.
[69] Zuchtriegel G, Uhl B, Puhr-Westerheide D, et al. Platelets guide leukocytes to their sites of extravasation[J]. PLoS Biol, 2016, 14: 1-28.
[70] Dinkla S, Van Cranenbroek B, Van DH, et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin[J]. Blood, 2016, 127: 1976-1986.
[71] O'Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease[J]. Trends Pharmacol Sci, 2009, 30: 240-248.
[72] Delputte PL, Van Gorp H, Favoreel HW, et al. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages[J]. PLoS One, 2011, 6: e16827.
[73] Kawasaki N, Vela JL, Nycholat CM, et al. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation[J]. Proc Natl Acad Sci U S A, 2013, 110: 7826-7831.
[74] Chen WC, Kawasaki N, Nycholat CM, et al. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169[J]. PLoS One, 2012, 7: e39039.
[75] Jabbour E, O'brien S, Ravandi F, et al. Monoclonal antibodies in acute lymphoblastic leukemia[J]. Blood, 2015, 125: 4010-4016.
[76] Norsworthy KJ, Ko CW, Lee JE, et al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33‐positive acute myeloid leukemia[J]. Oncologist, 2018, 23: 1103-1108.
[77] Li JG, Luan SR, Zhou XB. A new ADC drug for the treatment of acute lymphoblastic leukemia——BESPONSA[J]. Clin Med J (临床药物治疗杂志), 2017, 15: 9-14.
[78] Sohita D. Moxetumomab pasudotox: first global approval[J]. Drugs, 2018, 78: 1763-1767.
[79] Sullivan-Chang L, O'donnell RT, Tuscano JM. Targeting CD22 in B-cell malignancies: current status and clinical outlook[J]. BioDrugs, 2013, 27: 293-304.
[80] Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia[J]. Blood Rev, 2014, 28: 143-153.
[81] Kawasaki N, Rillahan CD, Cheng TY, et al. Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation[J]. J Immunol, 2014, 193: 1560-1566.
[82] Quentin H, Kayluz FB, Camilla J, et al. Siglec-9 regulates an effector memory CD8+ T-cell subset that congregates in the melanoma tumor microenvironment[J]. Cancer Immunol Res, 2019, 7: 707-718.
[83] Vivier E, Ugolini S, Blaise D, et al. Targeting natural killer cells and natural killer T cells in cancer[J]. Nat Rev Immunol, 2012, 12: 239-252.
[84] Choi J, Gyamfi J, Jang H, et al. The role of tumor-associated macrophage in breast cancer biology[J]. Histol Histopathol, 2018, 33: 133-145.
[85] Büll C, Heise T, Adema GJ, et al. Sialic acid mimetics to target the sialic acid–Siglec axis[J]. Trends Biochem Sci, 2016, 41: 519-531.
[86] Attrill H, Takazawa H, Witt S, et al. The structure of Siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design[J]. Biochem J, 2006, 397: 271-278.
[87] Kelm SR, Madge P, Islam T, et al. C-4 modified sialosides enhance binding to Siglec-2 (CD22): towards potent Siglec inhibitors for immunoglycotherapy[J]. Angew Chem Int Ed Engl, 2013, 52: 3616-3620.
[88] Madge PD, Maggioni A, Pascolutti M, et al. Structural characterisation of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma (BL) Daudi cells by NMR spectroscopy[J]. Sci Rep, 2016, 6: 36012.
[89] Gonzálezamaro R, Sánchezmadrid F. Cell adhesion molecules: selectins and integrins[J]. Crit Rev Immunol, 1999, 19: 389-429.
[90] Hirsh J. Low molecular weight heparin[J]. Harefuah, 1993, 70: 204-207.
[91] Lubor B. Selectins facilitate carcinoma metastasis and heparin can prevent them[J]. Physiology, 2004, 19: 16-21.
[92] Kevane B, Egan K, Allen S, et al. Endothelial barrier protective properties of low molecular weight heparin: a novel potential tool in the prevention of cancer metastasis[J]. Res Pract Thromb Haemost, 2017, 1: 23-32.
[93] Alam F, Al-Hilal TA, Park J, et al. Multi-stage inhibition in breast cancer metastasis by orally active triple conjugate, LHTD4 (low molecular weight heparin-taurocholate-tetrameric deoxycholate)[J]. Biomaterials, 2016, 86: 56-67.
[94] Koenig A, Norgard-Sumnicht K, Linhardt R, et al. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents[J]. J Clin Invest, 1998, 101: 877-889.
[95] Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D)[J]. J Clin Oncol, 2018, 36: 2017-2023.
[96] Stevenson JL, Varki A, Borsig L. Heparin attenuates metastasis mainly due to inhibition of P-and L-selectin, but non-anticoagulant heparins can have additional effects[J]. Thromb Res, 2007, 120: S107-S111.
[97] Kragh M, Binderup L, Vig Hjarnaa PJ, et al. Non-anti-coagulant heparin inhibits metastasis but not primary tumor growth[J]. Oncol Rep, 2005, 14: 99-104.
[98] Kragh M, Loechel F. Non-anti-coagulant heparins: a promising approach for prevention of tumor metastasis[J]. Int J Oncol, 2005, 27: 1159-1167.
[99] Fritzsche J, Alban S, Ludwig RJ, et al. The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity[J]. Biochem Pharmacol, 2006, 72: 474-485.
[100] Bachelet L, Bertholon I, Lavigne D, et al. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets[J]. Biochim Biophy Acta, 2009, 1790: 141-146.
[101] Fuster M, Brown JR, Wang L, et al. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells[J]. Cancer Res, 2003, 63: 2775-2781.
[102] Marathe DD, Buffone AJ, Chandrasekaran EV, et al. Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins[J]. Blood, 2010, 115: 1303-1312.
[103] Azab AK, Quang P, Azab F, et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment[J]. Blood, 2012, 119: 1468-1478.
[104] Dorian C, Misha D, Angela H, et al. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model[J]. Thromb Haemost, 2017, 117: 1171-1181.
[105] Steele MM, Radhakrishnan P, Magnani JL, et al. Abstract 4503: a small molecule glycomimetic antagonist of E-selectin (GMI-1271) prevents pancreatic tumor metastasis and offers a novel treatment for improved efficacy of chemotherapy[J]. Cancer Res, 2014, 74: 4503.
[106] Steele MM, Fogler WE, Magnani JL, et al. Abstract 425: a small molecule glycomimetic antagonist of E-selectin and CXCR4 (GMI-1359) prevents pancreatic tumor metastasis and improves chemotherapy[J]. Cancer Res, 2015, 75: 425.
[107] Shamay Y, Raviv L, Golan M, et al. Inhibition of primary and metastatic tumors in mice by E-selectin-targeted polymer-drug conjugates[J]. J Control Release, 2015, 217: 102-112.
[108] Shamay Y, Elkabets M, Li H, et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment[J]. SciTransl Med, 2016, 8: 345ra87.
[109] Chu PY, Tsai SC, Ko HY, et al. Co-delivery of natural compounds with a dual-targeted nanoparticle delivery system for improving synergistic therapy in an orthotopic tumor model[J]. ACS Appl Mater Interfaces, 2019, 11: 23880-23892.
[110] Wayne EC, Chandrasekaran S, Mitchell MJ, et al. TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer[J]. J Control Release, 2016, 223: 215-223.
[111] Wilhelm S, Tavares AJ, Qin D, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016, 1: 16014.
[112] Chen G, Roy I, Yang C, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chem Rev, 2016, 116: 2826-2885.
[113] Zheng HL, Song YZ, Deng YH. A review for phagocyte system: the executors of nanoparticles clearance[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2019, 36: 91-102.
[114] Biffi S, Voltan R, Bortot B, et al. Actively targeted nanocarriers for drug delivery to cancer cells[J]. Expert Opin Drug Deliv, 2019, 16: 481-496.
[115] Hua Q, Qiang Z, Chu M, et al. Polymeric drug delivery system with actively targeted cell penetration and nuclear targeting for cancer therapy[J]. ACS Appl Biol Mater, 2019, 2: 1724-1731.
[116] Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology[J]. J Autoimmun, 2017, 83: 134-142.
[117] Qiu QJ, Lu M, Li C, et al. Novel self-assembled ibrutinib-phospholipid complex for potently peroral delivery of poorly soluble drugs with pH-dependent solubility[J]. AAPS PharmSciTech, 2018, 19: 3571-3583.
[118] Zheng H, Li J, Luo X, et al. Murine RAW264.7 cells as cellular drug delivery carriers for tumor therapy: a good idea[J]. Cancer Chemoth Pharm, 2019, 83: 361-374.
[119] Luo X, Hu L, Zheng H, et al. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)-octadecylamine conjugate for lung cancer treatment[J]. Drug Deliv, 2018, 25: 1200-1212.
[120] Deninno MP. The synthesis and glycosidation of N-acetylneuraminic acid[J]. Synthesis, 1991, 23: 583-593.
[121] Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system[J]. FEBS Lett, 1987, 223: 42-46.
[122] Gregoriadis G, Mccormack B, Wang Z, et al. Polysialic acids: potential in drug delivery[J]. FEBS Lett, 1993, 315: 271-276.
[123] Jung B, Shim MK, Park MJ, et al. Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs[J]. Int J Pharm, 2017, 520: 111-118.
[124] Lehti TA, Pajunen MI, Skog MS, et al. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells[J]. Nat Commun, 2017, 8: 1915.
[125] Zhang R, Jain S, Rowland M, et al. Advances in insulin pen technologies: development and testing of solid dose formulations containing polysialic acid insulin conjugate: next generation of long-acting insulin[J]. J Diabetes Sci Technol, 2010, 4: 532.
[126] Kontermann RE. Strategies for extended serum half-life of protein therapeutics[J]. Curr Opin Biotech, 2011, 22: 868-876.
[127] Hu JB, Kang XQ, Jing L, et al. E-selectin-targeted sialic acid-PEG-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney injury[J]. Theranostics, 2017, 7: 2204-2219.
[128] Huang Z, Zhang Z, Jiang Y, et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy[J]. J Control Release, 2012, 158: 286-292.
[129] Zhang T, Zhou S, Hu L, et al. Polysialic acid-polyethylene glycol conjugate-modified liposomes as a targeted drug delivery system for epirubicin to enhance anticancer efficiency[J]. Drug Deliv Transl Res, 2018, 8: 602-616.
[130] Xiong Y, Li M, Lu Q, et al. Sialic acid-targeted biointerface materials and bio-applications[J]. Polymers, 2017, 9: 249.
[131] Jayant S, Khandare JJ, Wang Y, et al. Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment[J]. Pharm Res, 2007, 24: 2120-2130.
[132] Vodovozova EL, Moiseeva EV, Grechko GK, et al. Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model[J]. Eur J Cancer, 2000, 36: 942-949.
[133] Vodovozova EL, Gaenko GP, Bobrikova ES, et al. A diglyceride derivative of methotrexate: synthesis and cytotoxic activity in addressed liposomes[J]. Pharm Chem J, 2008, 41: 297-301.
[134] Hirai M, Minematsu H, Hiramatsu Y, et al. Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells[J]. Int J Pharm, 2010, 391: 274-283.
[135] Xu XL, Lu KJ, Zhu ML, et al. Sialic acid-functionalized pH-triggered micelles for enhanced tumor tissue accumulation and active cellular internalization of orthotopic hepatocarcinoma[J]. ACS Appl Mater Interfaces, 2018, 10: 31903-31914.
[136] Zheng JS, Zheng SY, Zhang YB, et al. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles[J]. Colloid Surface B, 2011, 83: 183-187.
[137] Zeisig R, Stahn R, Wenzel K, et al. Effect of sialyl Lewis X-glycoliposomes on the inhibition of E-selectin-mediated tumour cell adhesion in vitro[J]. Biochim Biophys Acta, 2004, 1660: 31-40.
[138] Saiki I, Koike C, Obata A, et al. Functional role of sialyl Lewis X and fibronectin-derived RGDS peptide analogue on tumor-cell arrest in lungs followed by extravasation[J]. Int J Cancer, 1996, 65: 833-839.
[139] Keil C, Zeisig R, Fichtner I. Effect of surface modified liposomes on the aggregation of platelets and tumor cells[J]. Thromb Haemost, 2005, 94: 404-411.
[140] She ZN, Zhang T, Wang XL, et al. The anticancer efficacy of pixantrone-loaded liposomes decorated with sialic acid-octadecylamine conjugate[J]. Biomaterials, 2014, 35: 5216-5225.
[141] Zhou SL, Zhang T, Peng B, et al. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity[J]. Int J Pharm, 2017, 523: 203-216.
[142] Qiu QJ, Li C, Song YZ, et al. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy[J]. Acta Biomater, 2019, 92: 184-195.
[143] Li C, Qiu QJ, Liu M, et al. Sialic acid-conjugate modified liposomes targeting neutrophils for improved tumour therapy[J]. Biomater Sci, 2020, 8: 2189-2201.
[144] Chen Z, Liu M, Li L, et al. Involvement of the Warburg effect in non-tumor diseases processes[J]. J Cell Physiol, 2018, 233: 2839-2849.
[145] Mandal C, Mandal C. Sialic acid binding lectins[J]. Experientia, 1990, 46: 433-441.
[146] Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer[J]. Glycoconj J, 2018, 35: 139-160.
[147] Thing TS, Ogrodzinski MP, Christina R, et al. Sialic acid metabolism: a key player in breast cancer metastasis revealed by metabolomics[J]. Front Oncol, 2018, 8: 174.
[148] Chiodelli P, Urbinati C, Paiardi G, et al. Sialic acid as a target for the development of novel antiangiogenic strategies[J]. Future Med Chem, 2018, 10: 2835-2854.
[149] Moons SJ, Adema GJ, Derks MT, et al. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs[J]. Glycobiology, 2019, 29: 433-445.
[150] Kang SA, Blache CA, Bajana S, et al. The effect of soluble E-selectin on tumor progression and metastasis[J]. BMC Cancer, 2016, 16: 331.
[151] Ku AW, Muhitch JB, Powers CA, et al. Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes[J]. eLife, 2016, 5: e17375.
[152] Grabowska J, Lopez-Venegas MA, Affandi AJ, et al. CD169+ macrophages capture and dendritic cells instruct: the interplay of the gatekeeper and the general of the immune system[J]. Front Immunol, 2018, 9: 2472.
[153] Korangath P, Barnett JD, Sharma A, et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer[J]. Sci Adv, 2020, 6: eaay1601.
[154] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloid Surface B, 2010, 75: 1-18.
[155] Witzigmann D, Uhl P, Sieber S, et al. Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide[J]. eLife, 2019, 8: e42276.
[156] Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents[J]. Nat Rev Drug Discov, 2015, 14: 203-219.
[157] Zhang H, Ma Y, Sun XL. Recent developments in carbohydrate-decorated targeted drug/gene delivery[J]. Med Res Rev, 2011, 30: 270-289.
相关文献:
1.赖晓雪, 王硕, 闫鑫杨, 刘欣荣, 宋艳志, 邓意辉*.基于血小板的肿瘤靶向治疗策略与反思[J]. 药学学报, 2021,56(4): 1025-1034
2.邵荣光.基于单克隆抗体的肿瘤免疫治疗[J]. 药学学报, 2020,55(6): 1110-1118
3.张佳, 赵婷, 敦洁宁, 孙明贤, 黄荣荣, 向柏, 白靖, 曹德英.门控型药物递送系统研究进展[J]. 药学学报, 2019,54(6): 1017-1025
4.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099
5.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017,52(7): 1110-1116
6.张美, 李光伟.纤维连接蛋白B结构域的生物学特征及其靶向药物开发[J]. 药学学报, 2017,52(8): 1216-1221
7.马银云, 李莉, 黄海凤, 缑三虎, 倪京满.肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016,51(5): 717-724
8.宋艳志, 黄振君, 骆翔, 王梦静, 郑锦辉, 时佳, 邓意辉.不同链长唾液酸衍生物修饰脂质体的药效学研究[J]. 药学学报, 2016,51(2): 316-324
9.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,