药学学报, 2021, 56(11): 3082-3090
引用本文:
赵丽珠, 杨波, 孙向明, 张天雷, 于大海, 李文兰, 阎新佳. 黄芪汤化学成分分析及其治疗非酒精性脂肪肝病的机制[J]. 药学学报, 2021, 56(11): 3082-3090.
ZHAO Li-zhu, YANG Bo, SUN Xiang-ming, ZHANG Tian-lei, YU Da-hai, LI Wen-lan, YAN Xin-jia. Chemical constituents of Huangqi decoction and their mechanisms in the treatment of non-alcoholic fatty liver disease[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 3082-3090.

黄芪汤化学成分分析及其治疗非酒精性脂肪肝病的机制
赵丽珠1,2,3, 杨波1,2,3, 孙向明1, 张天雷1, 于大海1, 李文兰1,2,3*, 阎新佳1,2,3*
1. 哈尔滨商业大学药学院, 黑龙江 哈尔滨 150076;
2. 抗肿瘤天然药物教育部工程研究中心, 黑龙江 哈尔滨 150076;
3. 黑龙江省预防与治疗老年性疾病药物研究重点实验室, 黑龙江 哈尔滨 150076
摘要:
利用高效液相色谱-二极管阵列检测器-蒸发光散射检测器 (HPLC-DAD-ELSD) 联用技术分析黄芪汤的化学成分,运用网络药理学研究黄芪汤治疗非酒精性脂肪肝病 (non-alcoholic fatty liver disease,NAFLD) 的多成分、多靶点、多途径作用机制。建立15批黄芪汤水煎液的指纹图谱,使用网络药理学筛选黄芪汤主要活性成分的作用靶点和通路,构建“成分-靶点-通路”网络,预测黄芪汤水煎液治疗NAFLD的作用机制。构建了由27个共有峰组成的黄芪汤水煎液高效液相指纹图谱,采用HPLC-DAD-ELSD技术分析黄芪汤主要化学成分。基因本体 (gene ontology,GO) 和京都基因与基因组百科全书 (Kyoto encyclopedia of genes and genomes,KEGG) 通路富集分析发现,黄芪汤可能主要通过甘草次酸、异甘草素、甘草酸、黄芪甲苷、甘草素和黄芪皂苷I作用于丝氨酸/苏氨酸蛋白激酶1 (RAC-alpha serine/threonine-protein kinase,AKT1)、白介素-6 (interleukin-6,IL-6)、血管内皮生长因子A (vascular endothelial cell growth factor A,VEGFA)、丝裂原活化蛋白激酶8 (mitogen-activated protein kinase 8,MAPK8) 和信号转导与转录激活因子3 (signal transducer and activator of transcription 3,STAT3) 潜在靶点,主要通过调节磷脂酰肌醇3激酶/蛋白激酶B、胰岛素抵抗、低氧诱导因子-1和肿瘤坏死因子等信号通路发挥作用。黄芪汤可能通过改善胰岛素抵抗、介导炎症反应、抗氧化应激损伤等机制治疗NAFLD。
关键词:    黄芪汤      指纹图谱      网络药理学      HPLC-DAD-ELSD      作用机制      药效物质基础     
Chemical constituents of Huangqi decoction and their mechanisms in the treatment of non-alcoholic fatty liver disease
ZHAO Li-zhu1,2,3, YANG Bo1,2,3, SUN Xiang-ming1, ZHANG Tian-lei1, YU Da-hai1, LI Wen-lan1,2,3*, YAN Xin-jia1,2,3*
1. College of Pharmacy, Harbin University of Commerce, Harbin 150076, China;
2. Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin 150076, China;
3. Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin 150076, China
Abstract:
We analyzed the main chemical constituents of Huangqi decoction by HPLC coupled with diode array and evaporative light scattering detectors (HPLC-DAD-ELSD). The study on the mechanism of Huangqi decoction was based on network pharmacology and included multi-components, multi-targets, and multi-pathways in the treatment of non-alcoholic fatty liver disease (NAFLD). The chemical "fingerprints" of 15 batches of Huangqi decoction were established. Network pharmacology was used to screen and analyze the targets and pathways of the components of Huangqi decoction, and a "component-target-pathway" network was constructed to predict the mechanism of Huangqi decoction for the treatment of NAFLD. HPLC analysis of Huangqi decoction revealed 27 common peaks and the main chemical constituents were identified. Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that glycyrrhetinic acid, isoliquiritigenin, glycyrrhizic acid, astragaloside IV, liquiritigenin, and astragaloside І, the main active components of Huangqi decoction, may act on RAC-alpha serine/threonine-protein kinase (AKT1), interleukin-6 (IL-6), vascular endothelial cell growth factor A (VEGFA), mitogen-activated protein kinase 8 (MAPK8), and signal transducer and activator of transcription 3 (STAT3), and may regulate pathways involving phosphatidylinositol-3-kinases (PI3K)/protein kinase B (AKT), insulin resistance, hypoxia inducible factor-1 (HIF-1), tumor necrosis factor (TNF), among others. A decrease in insulin resistance, a reduction of inflammation, and anti-oxidative stress-related effects may be the mechanism of Huangqi decoction for the treatment of NAFLD.
Key words:    Huangqi decoction    fingerprint    network pharmacology    HPLC-DAD-ELSD    effective mechanism    pharmacodynamic material basis   
收稿日期: 2021-02-14
DOI: 10.16438/j.0513-4870.2021-0231
基金项目: 黑龙江省属高等学校基本科研业务费科研项目(18XN050);黑龙江省博士后基金(LBH-Z19169);黑龙江省普通高等学校青年创新人才培养计划项目(UNPYSCT-2020222);黑龙江省自然科学基金优秀青年项目(YQ2020H023).
通讯作者: 李文兰,Tel:18846180239,E-mail:liwenlan2010@163.com;阎新佳,Tel:18846067376,E-mail:yxjhashangda@163.com
Email: liwenlan2010@163.com;yxjhashangda@163.com
相关功能
PDF(6190KB) Free
打印本文
0
作者相关文章
赵丽珠  在本刊中的所有文章
杨波  在本刊中的所有文章
孙向明  在本刊中的所有文章
张天雷  在本刊中的所有文章
于大海  在本刊中的所有文章
李文兰  在本刊中的所有文章
阎新佳  在本刊中的所有文章

参考文献:
[1] Wu JX, Shao HR, Zhang JH, et al. Mussel polysaccharide α-D-glucan (MP-A) protects against nonalcoholic fatty liver disease via maintaining the homeostasis of gut-microbiota and regulating related gut-liver axis signaling pathways[J]. Int J Biol Macromol, 2019, 130: 68-78.
[2] Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65: 1038-1048.
[3] Yang P, Zhou YP, Chang CT, et al. Astragaloside Ⅳ regulates Nrf2/Bach1/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation[J]. China J Chin Mater Med (中国中药杂志), 2019, 44: 2331-2337.
[4] Jia W, Xie GX, Zhao AH. Influence of Huangqi decoction on human metabolism and its auxiliary role in disease prevention and treatment[J]. J Med Res (医学研究杂志), 2017, 46: 26-30.
[5] Li YY, Zeng JK, Zhang XY, et al. Effect of Huangqi decoction on entecavir pharmacokinetics in rat plasma[J]. Acta Pharm Sin (药学学报), 2016, 51: 1429-1435.
[6] Ma YH, Qiu XQ, Shi X, et al. Effects of Astragali Radix polysaccharides on ACE2-[Ang-(1-7)]-Mas axis and insulin resistance in non-alcoholic steatohepatitis rats[J]. Chin Tradit Pat Med (中成药), 2019, 41: 1012-1017.
[7] Liu P, Wang GQ, Chen GF, et al. Huangqi decoction inhibits apoptosis and fibrosis, but promotes Kupffer cell activation in dimethylnitrosamine-induced liver fibrosis in rats[J]. BMC Complement Altern Med, 2012, 12: 51-58.
[8] Yuan QF, Tang SM, Chen SY, et al. Therapeutic effect of astragalus polysaccharides on nonalcoholic fatty liver disease in rats[J]. Acad J Second Mil Med Univ (第二军医大学学报), 2018, 39: 573-578.
[9] Li Y, Yi H, Cai YL, et al. Effect of total flavonoids of astragalus on liver fibrosis induced by carbon tetrachloride in rats[J]. Chin Tradit Pat Med (中成药), 2018, 41: 1710-1713.
[10] Fu X, Song B, Tian GW, et al. The effects of the water-extraction of Astragali Radix and Lycopi herba on the pathway of TGF-smads-UPP in a rat model of diabetic nephropathy[J]. Pharmacogn Mag, 2013, 10: 491-496.
[11] Wang YL, Ba Y. Studies on the chemical constituents of Radix astragali and their inhibitory effect on HepG2 proliferation[J]. Biomed Res, 2015, 26: 393-398.
[12] Long Y, Zhang XX, Chen T, et al. Radix Astragali improves dysregulated triglyceride metabolism and attenuates macrophage infiltration in adipose tissue in high-fat diet-induced obese male rats through activating mTORC1-PPARγ signaling pathway[J]. PPAR Res, 2014, 2014: 189085.
[13] Gao J, Liu ZJ, Chen T, et al. Pharmaceutical properties of calycosin, the major bioactive isoflavonoid in the dry root extract of Radix astragali[J]. Pharm Biol, 2014, 52: 1217-1222.
[14] Li L, Hou X, Xu R, et al. Research review on the pharmacological effects of astragaloside IV[J]. Fund Clin Pharmacol, 2016, 31: 17-36.
[15] Cai Z, Liu J, Bian H, et al. Astragaloside IV ameliorates necrotizing enterocolitis by attenuating oxidative stress and suppressing inflammation via the vitamin D3-upregulated protein 1/NF-κB signaling pathway[J]. Exp Ther Med, 2016, 12: 2702-2708.
[16] Quan GH, Wang H, Cao J, et al. Calycosin suppresses RANKL-mediated osteoclastogenesis through inhibition of MAPKs and NF-κB[J]. Int J Mol Sci, 2015, 16: 29496-29507.
[17] Wu H, Gao Y, Shi HL, et al. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network[J]. Sci Rep, 2016, 22: 30-39.
[18] Tang JY, Li S, Li ZH, et al. Calycosin promotes angiogenesis involving estrogen receptor and mitogen-activated protein kinase (MAPK) signaling pathway in zebrafish and HUVEC[J]. PLoS One, 2015, 5: e11822.
[19] Li J, Lin X, Ma YF, et al. Protective effect of calycosin-7-O-β-D-glucopyranoside against oxidative stress of BRL-3A cells induced by thioacetamide[J]. Pharmacogn Mag, 2015, 11: 524-532.
[20] Wu L, Zhang F, Zheng SZ, et al. Research progress on treatment of non-alcoholic fatty liver with traditional Chinese medicine[J]. Chin Tradit Pat Med (中成药), 2015, 37: 1072-1075.
[21] Hoo RL, Wong JY, Qiao CF, et al. The effective fraction isolated from Radix Astragali alleviates glucose intolerance, insulin resistance and hypertriglyceridemia in db/db diabetic mice through its anti-inflammatory activity[J]. Nutr Metab, 2010, 7: 67-79.
[22] Zhang MF, Shen YQ. Research advances on anti-obesity and anti-fatty liver effects of licorice and its active components[J]. Drug Eval Res (药物评价研究), 2009, 38: 439-447.
[23] Gao XY, Wang WQ, Wei SL, et al. Review of pharmacological effects of Glycyrrhiza Radix and its bioactive compounds[J]. China J Chin Mater Med (中国中药杂志), 2009, 34: 2695-2700.
[24] Yan CL, Luo YL, An FY, et al. Inhibition effects of total astragalosides combined with cisplatin on STAT3-mediated inflammatory signal pathways in H22 tumor-bearing mice[J]. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2020, 36: 1359-1366.
[25] Zhao YM, Liu SX, Zhang CX, et al. Analysis on chemical constituents from Glycyrrhizae Radix et Rhizoma by HPLC-Q-TOF-MS[J]. Chin Tradit Pat Med (中草药), 2016, 47: 2061-2068.
[26] Yang B, Wang Y, Tian M, et al. Analysis on chemical constituents of Glycyrrhizae Radix et Rhizoma in Pinelliae Rhizoma Praeparatum by UPLC-Q-TOF-MS/MS[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2017, 22: 45-50.
[27] Zhao HX, Zhang XH, Chen XW, et al. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6[J]. Toxicol Appl Pharm, 2014, 179: 311-321.
[28] He SQ, Gao M, Fu YF, et al. Glycyrrhizic acid inhibits leukemia cell growth and migration via blocking AKT/mTOR/STAT3 signaling[J]. Int J Clin Exp Pathol, 2015, 8: 5175-5181.
[29] Yang P, Zhou YP, Xia Q, et al. Astragaloside IV regulates the PI3K/AKT/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation[J]. Biol Pharm Bull, 2019, 42: 721-727.
[30] Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone[J]. Res Commun, 2003, 311: 372-379.
[31] Kugelmas M, Hill DB, Vivian B, et al. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E[J]. Hepatology, 2003, 38: 413-419.
[32] Leclercq IA, Lebrun VA, Starkel P, et al. Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARgamma agonist pioglitazone[J]. Lab Invest, 2007, 87: 56-65.
[33] Miller AM, Wang H, Bertola A, et al. Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice[J]. Hepatology, 2011, 54: 846-856.
[34] Min HK, Mirshahi F, Verdianelli A, et al. Activation of the GP130-STAT3 axis and its potential implications in nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308: G794-G803.
[35] Xu P, Zhang G, Hou S, et al. MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 106: 1419-1427.
[36] Gong LY, Tang HM, Luo ZZ, et al. Tamoxifen induces fatty liver disease in breast cancer through the MAPK8/FoxO pathway[J]. Clin Transl Med, 2020, 10: 137-150.
[37] Yilmaz Y, Yonal O, Kurt R, et al. Circulating levels of vascular endothelial growth factor A and its soluble receptor in patients with biopsy-proven nonalcoholic fatty liver disease[J]. Arch Med Res, 2011, 42: 38-43.
[38] Wang Q, Wu PB, Li M, et al. Gene polymorphism of VEGF and its interaction with smoking in patients with non-alcoholic fatty liver disease[J]. Shandong Med (山东医药), 2016, 56: 7-9.
相关文献:
1.韩彦琪, 陈志霖, 刘耀晨, 胡江宁, 许浚, 张洪兵, 刘建庭, 张杨, 张铁军, 刘昌孝.基于网络药理学的复方鱼腥草合剂清热解毒药效物质基础及作用机制研究[J]. 药学学报, 2021,56(6): 1653-1662
2.钟仁兴, 丁子禾, 杨燕妮, 夏天乙, 王武静, 王毅, 王艳慧, 舒尊鹏.基于网络药理学分析的橘红痰咳液主治“痰、咳、喘”的药效物质基础与作用机制研究[J]. 药学学报, 2020,55(9): 2134-2144
3.宋红新, 马旭冉, 王敦方, 王彦礼, 邹迪新, 苗金雪, 王汉, 杨伟鹏.基于网络药理学的黄芩汤治疗溃疡性结肠炎的潜在机制研究[J]. 药学学报, 2020,55(2): 247-255
4.高凤凤, 裴艳玲, 任越, 陈紫军, 卢建秋, 张燕玲.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J]. 药学学报, 2020,55(11): 2642-2650
5.田瑞, 李宇飞, 李莹倩, 郑继雯, 李华山.基于网络药理学探讨李氏溃结方治疗溃疡性结肠炎的分子机制[J]. 药学学报, 2020,55(11): 2657-2664
6.董雅倩, 张佳幸, 龚琳娜, 石碧锐, 周凤华, 肖炜, 刘孟华.白花蛇舌草环烯醚萜的鉴定及基于网络药理学的抗肾纤维化作用的机制研究[J]. 药学学报, 2020,55(12): 2934-2941
7.马林, 邵明燕, 孙乾斌, 李春, 王勇.基于网络药理学的丹七片治疗冠心病作用机制研究[J]. 药学学报, 2020,55(12): 2942-2950
8.袁文彬, 韦艳美, 陈勇, 梁继超.基于网络药理学对刺五加总苷治疗2型糖尿病作用机制研究[J]. 药学学报, 2019,54(11): 1982-1989
9.胡晓茹, 郑海荣, 党海霞, 胡秦, 康帅, 戴忠, 马双成.基于网络药理学的红花注射液用红花药材质量控制方法研究[J]. 药学学报, 2019,54(11): 2074-2082
10.史海龙, 冯雪松, 马晓军, 胥冰, 晁旭.基于网络药理学的固肠止泻丸治疗肠易激综合征作用机制研究[J]. 药学学报, 2019,54(3): 482-493
11.郭秋岩, 李玮婕, 王超, 曹人郦, 李泰贤, 毛霞, 王晓月, 郭敏群, 张彦琼, 林娜.乌头汤缓解神经病理性疼痛的炎症网络调控机制研究[J]. 药学学报, 2019,54(6): 1054-1061
12.张莹, 韦佳慧, 张成玲, 李攀红, 孙文威, 徐晓玉, 陈怡.基于网络药理学的加味佛手散抑制子宫内膜侵袭转移机制研究[J]. 药学学报, 2018,53(9): 1398-1405
13.李建良, 梁慧, 蔡淑珍, 李志勇, 图雅.基于网络药理学探讨蒙药诃子解草乌心脏毒的机制研究[J]. 药学学报, 2018,53(10): 1670-1679
14.翟园园, 刘其南, 徐佳, 姚卫峰, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸保肝作用机制研究[J]. 药学学报, 2018,53(4): 567-573
15.王珂欣, 高丽, 周玉枝, 张建琴, 秦雪梅, 杜冠华.基于网络药理学的苦参碱抗肝癌作用及机制研究[J]. 药学学报, 2017,52(6): 888-896
16.赵蕾, 武嫣斐, 高耀, 向欢, 秦雪梅, 田俊生.基于网络药理学的百合地黄汤干预心理亚健康作用机制研究[J]. 药学学报, 2017,52(1): 99-105
17.徐晶晶, 尚明英, 徐风, 李耀利, 刘广学, 王璇, 蔡少青.临床常用中西药血药浓度的比较与分析[J]. 药学学报, 2017,52(8): 1222-1234
18.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275
19.陶瑾, 姜民, 陈露莹, 侯媛媛, 张德芹, 邱峰, 白钢.基于中药性味理论和网络药理学方法的治疗消渴方药作用机制研究[J]. 药学学报, 2017,52(2): 236-244
20.牟海栋, 屠鹏飞, 姜勇.基于网络药理学的肉桂温经通脉的作用机制研究[J]. 药学学报, 2016,51(11): 1724-1733
21.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387
22.白雨, 范雪梅, 孙瀚, 王义明, 梁琼麟, 罗国安.基于网络药理学的罗格列酮复方作用机制探讨[J]. 药学学报, 2015,50(3): 284-290
23.贺福元, 邓凯文, 黄胜, 刘文龙, 石继连.总量统计矩标准相似度数学模型的建立及应用研究[J]. 药学学报, 2013,48(9): 1453-1458
24.刘志华,孙晓波.网络药理学:中医药现代化的新机遇[J]. 药学学报, 2012,47(6): 696-703