药学学报, 2021, 56(11): 3118-3129
引用本文:
李丽, 张英秀, 赵日杂, 蔡汶甫, 张志锋*. 基于GC-MS代谢组学的云南紫菀和臭蚤草的多元统计分析及抑菌活性研究[J]. 药学学报, 2021, 56(11): 3118-3129.
LI Li, ZHANG Ying-xiu, ZHAO Ri-za, CAI Wen-fu, ZHANG Zhi-feng*. Multivariate statistical analysis based on GC-MS metabolomics and antibacterial activity of Aster yunnanensis and Pulicaria insignis[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 3118-3129.

基于GC-MS代谢组学的云南紫菀和臭蚤草的多元统计分析及抑菌活性研究
李丽, 张英秀, 赵日杂, 蔡汶甫, 张志锋*
西南民族大学药学院、青藏高原研究院, 青藏高原民族药用资源保护与利用国家民委重点实验室, 四川 成都 610041
摘要:
本研究为明确云南紫菀和臭蚤草的代谢物组异同及抑菌活性,以至正本清源、更有效利用药用植物资源。采用样品衍生化、气相色谱-质谱联用 (GC-MS) 技术对云南紫菀和臭蚤草的化学指纹进行非靶向代谢组学研究,并利用无监督的主成分分析 (PCA)、有监督的偏最小二乘判别分析 (PLS-DA) 和正交偏最小二乘法判别分析 (OPLS-DA) 等多元统计分析方法,对云南紫菀和臭蚤草进行差异代谢物筛选,并通过相关性分析来衡量显著差异代谢物之间的相关密切程度,进而对差异代谢物进行代谢通路富集分析,以确定差异样品中代谢途径的变化机制。同时对云南紫菀和臭蚤草挥发油进行抑菌活性研究。结果共鉴定出包括氨基酸及其衍生物、苯丙素类、芳香族、苷类、核苷酸、黄酮类、生物碱类、糖类、维生素、有机酸、脂类、酯类、醇类等在内的384种代谢产物。对显著变化 (P < 0.05,VIP > 1) 的差异代谢物进行鉴定,共筛选出92种差异代谢物,它们在含量上存在显著差异。抑菌活性表明,云南紫菀和臭蚤草对5种临床致病菌具有较弱的抑菌作用。因此,本研究建立了一种基于柱前衍生与GC-MS代谢组学的方法比较云南紫菀和臭蚤草,为其基原鉴别及临床合理应用提供了科学依据。
关键词:    云南紫菀      臭蚤草      气相色谱-质谱联用      代谢组学      抑菌活性     
Multivariate statistical analysis based on GC-MS metabolomics and antibacterial activity of Aster yunnanensis and Pulicaria insignis
LI Li, ZHANG Ying-xiu, ZHAO Ri-za, CAI Wen-fu, ZHANG Zhi-feng*
College of Pharmacy, Institute of Tibetan Plateau, Southwest Minzu University, Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission, Chengdu 610041, China
Abstract:
The study was undertaken to clarify the differences in metabolite groups between Aster yunnanensis and Pulicaria insignis to establish plant origin and identify plant resources. Non-target metabolomics of A. yunnanensis and P. insignis was undertaken with sample derivatives and gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to characterize the differing metabolites of A. yunnanensis and P. insignis. Correlation analysis of these metabolites and metabolic pathway analysis allowed us to identify metabolic pathway changes between samples. Characterization of the antibacterial activity of the essential oil from A. yunnanensis and P. insignis showed that 384 metabolites were identified in the two species, including amino acids and peptides, phenylpropanoids, aromatics, glycoside, nucleotide, flavonoid, alkaloids, saccharides, vitamin, organic acid, lipids, esters, alcohol. A total of 92 differential metabolites with significant differences in content (P < 0.05, VIP > 1) were identified. In conclusion, a new method based on pre-column derivatives and GC-MS metabolomics was used to distinguish and compare A. yunnanensis and P. insignis metabolites.
Key words:    Aster yunnanensis    Pulicaria insignis    GC-MS    metabolomics    antibacterial activity   
收稿日期: 2021-04-21
DOI: 10.16438/j.0513-4870.2021-0568
基金项目: 国家自然科学基金资助项目(31870314);四川省科技厅区域创新合作项目(2020YFQ0007);西南民族大学中央高校基本科研业务专项基金项目(2021HQZZ01).
通讯作者: 张志锋,Tel:86-28-89165778,E-mail:zhangzhf99@gmail.com
Email: zhangzhf99@gmail.com
相关功能
PDF(6239KB) Free
打印本文
0
作者相关文章
李丽  在本刊中的所有文章
张英秀  在本刊中的所有文章
赵日杂  在本刊中的所有文章
蔡汶甫  在本刊中的所有文章
张志锋*  在本刊中的所有文章

参考文献:
[1] Jia MR, Li XW. Chinese Ethnomedicine Annals (中国民族药志要)[M]. Beijing: China Medical Science and Technology Press, 2005, 9: 77-78.
[2] Flora of China Editorial Committee, Chinese Academy of Sciences. Flora of China (中国植物志)[M]. Beijing: Science Press, 1979, 75: 292.
[3] Shao Y, Zhou BN. Asteryunnanosides C and D, two novel triterpenoid saponins from Aster yunnanensis Franch[J]. Nat Prod J, 2006, 6: 87-93.
[4] Shao Y, Zhou BN, Lin LZ, et al. Asteryunnanosides F and G: two new triterpenoid saponins from Aster yunnanensis[J]. Planta Med, 1995, 61: 446-449.
[5] Shao Y, Zhou BN, Lin LZ, et al. Triterpene saponins from Aster yunnanensis[J]. Phytochemistry, 1995, 38: 1487-1492.
[6] Shao Y, Zhou BN, Gao JH, et al. Glycosides from Aster yunnanensis[J]. Phytochemistry, 1995, 38: 675-680.
[7] Shao Y, Zhou BN, Ma K, et al. A new triterpenoid saponin, asteryunnanoside H, from Aster yunnanensis[J]. Chin Chem Lett, 1994, 5: 839-842.
[8] Shao Y, Zhou BN, Lin LZ, et al. Two new oleanolic acid saponin from Aster yunnanensis[J]. Chin Chem Lett, 1994, 5: 843-846.
[9] Shao Y, Zhou BN, Lin LZ, et al. Asteryunnanoside E, a new triterpenoid saponin from Aster yunnanensis Franch.[J]. Chin Chem Lett, 1994, 5: 761-764.
[10] Shao Y, Gao JH, Zhou BN. Asteryunnanoside A and B, two new triterpenoid saponin from Aster yunnanensis Franch.[J]. Chin Chem Lett, 1994, 5: 121-124.
[11] Li L, Lv X, Su XY, et al. Pharmacognostical studies on Tibetan medicine Pulicaria insignis[J]. Chin Med Mat (中药材), 2021, 44: 318-321.
[12] Hunag SZ, Jiang SP, Zhu HJ. A new phenylpropanoid glycoside from Tibetan medicine Pulicaria insignis[J]. Nat Prod Res Dev (天然产物研究与开发), 2009, 21: 549-552.
[13] Fan HF, Huang SZ, Jiang SP, et al. A new phenylpropanoid glycoside from Tibetan medicine Pulicaria insignis[J]. Chem J Chin Univ (高等学校化学学报), 2011, 32: 292-295.
[14] Huang SZ, Li LB, Jiang SP, et al. A rarely reported trinorsesquiterpene-type structure in an isolate from Pulicaria insignis[J]. Helv Chim Acta, 2010, 93: 1808-1811.
[15] Huang SZ, Jiang SP, Zhu HJ. Sesquiterpenoids from Tibetan folk drug Pulicaria insignis[J]. Nat Prod Res Dev (天然产物研究与开发), 2010, 22: 736-739, 785.
[16] Qi W, Li MW, Fu DH, et al. Sesquiterpene glycoside diversities with anti-nematodal activities from Pulicaria insignis[J]. Phytochem Lett, 2020, 38: 161-165.
[17] Di MaErDZPC. Jingzhu Bencao (晶珠本草)[M]. Shanghai: Shanghai Science and Technology Press, 1986: 102-103.
[18] Ga W. Zangyao Jingjing Bencao (藏药晶镜本草)[M]. Beijing: Nationalities Press, 1995: 261-262.
[19] Zhi H, Ai D, Wu KX, et al. Comparison on chemical constituents between Potentilla chinensis and P. acaulis using GC-MS by metabolomics approach[J]. Bull Bot Res (植物研究), 2020, 40: 718-727.
[20] Adebo OA, Oyeyinka SA, Adebiyi JA, et al. Application of gas chromatography-mass spectrometry (GC-MS)-based metabolomics for the study of fermented cereal and legume foods: a review[J]. Int J Food Sci Tech, 2021, 56: 1514-1534.
[21] Zeki ÖC, Eylem CC, Reçber T, et al. Integration of GC-MS and LC-MS for untargeted metabolomics profiling[J]. J Pharm Biomed Anal, 2020, 190: 113509.
[22] Papadimitropoulos MP, Vasilopoulou CG, Maga-Nteve C, et al. Untargeted GC-MS metabolomics[J]. Methods Mol Biol, 2018, 1738: 133-147.
[23] Beale DJ, Pinu FR, Kouremenos KA, et al. Review of recent developments in GC-MS approaches to metabolomics-based research[J]. Metabolomics, 2018, 14: 152.
[24] Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29: 1181-1189.
[25] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS)[J]. J Chemometr, 2002, 16: 119-128.
[26] Tsugawa H, Cajka T, Kind T, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis[J]. Nat Methods, 2015, 12: 523-526.
[27] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Part Ⅳ. Beijing: China Medical Science Press, 2020: 233.
[28] Chen YJ, Wu H, Wei ZY, et al. Identification of chemical constituents in Aster tataricus by UHPLC-Q-TOF-MS[J]. Acta Pharm Sin (药学学报), 2019, 54: 1645-1654.
[29] Sun YP, Li L, Liao M, et al. A systematic data acquisition and mining strategy for chemical profiling of Aster Tataricus Rhizoma (Ziwan) by UHPLC-Q-TOF-MS and the corresponding anti-depressive activity screening[J]. J Pharm Biomed Anal, 2018, 154: 216-226.
[30] Zhao DX, Hu BQ, Zhang M, et al. Simultaneous separation and determination of phenolic acids, pentapeptides, and triterpenoid saponins in the root of Aster tataricus by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry[J]. J Sep Sci, 2015, 38: 571-575.
[31] Wang J, Xu DK, Xiao Y, et al. The OPLS-DA model of tobacco producing areas based on chemical measurements[J]. Chin Tob Sci (中国烟草科学), 2017, 38: 91-96.
[32] Cheng Y, Xie G, Chen T, et al. Distinct urinary metabolic profile of human colorectal cancer[J]. J Proteome Res, 2012, 11: 1354-1363.
[33] Kind T, Wohlgemuth G, Lee DY, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry[J]. Anal Chem, 2009, 81: 10038-10048.
[34] Huang LS, Gu YF, Li H. Advances in herbal volatile oil and aromatic herbs[J]. China J Chin Mater Med (中国中药杂志), 2009, 34: 1605-1611.
[35] Gu XW, Chen Y, Wang M, et al. Progress in the research on the phenylpropanoids and its related chemical constituents of Malvaceae[J]. Chin Wild Plant Resour (中国野生植物资源), 2012, 31: 17-21.
[36] Liu HD, Pan LL, Zhou X, et al. Research progress on chemical constituents and pharmacological activities of alkaloids in Orchidaceae plants[J]. Chin Tradit Herb Drugs (中草药), 2019, 50: 731-744.
[37] Zhao XW, Liu PY, Liu D, et al. Research progress in structure-activity relationship of flavoniods[J]. Chin Tradit Herb Drugs (中草药), 2015, 46: 3264-3271.
[38] Kaplan F, Kopka J, Sung DY, et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content[J]. Plant J, 2007, 50: 967-981.
[39] Zhao W. Screening and Analysis of 2,3,5,4'-Tetrahydroxy Stilbene-2-O-β-D-Glucoside Biosynthesis Related Transcripts from Fallopia multiflora (何首乌中二苯乙烯苷生物合成相关基因的筛选与分析)[D]. Guangzhou: South China University of Technology, 2014.