药学学报, 2021, 56(11): 3173-3183
引用本文:
万志庭, 鲁梦, 吴沙沙, 米要磊, 翟俊文. 中药火麻仁基原植物大麻MIKC型MADS-box基因家族鉴定与表达分析[J]. 药学学报, 2021, 56(11): 3173-3183.
WAN Zhi-ting, LU Meng, WU Sha-sha, MI Yao-lei, ZHAI Jun-wen. Identification and expression analysis of the MIKC-type MADS-box gene family in Cannabis sativa L.[J]. Acta Pharmaceutica Sinica, 2021, 56(11): 3173-3183.

中药火麻仁基原植物大麻MIKC型MADS-box基因家族鉴定与表达分析
万志庭1, 鲁梦1, 吴沙沙1, 米要磊2*, 翟俊文1*
1. 福建农林大学园林学院/兰科植物保护与利用国家林业和草原局重点实验室, 福建 福州 350002;
2. 中国中医科学院中药研究所, 北京 100700
摘要:
MIKC型MADS-box基因家族在植物花发育中发挥重要作用。本研究利用生物信息学方法从基因组数据中对大麻 (Cannabis sativa L.) MIKC型基因进行鉴定,并对基因序列特征、染色体定位、基因结构、系统发育树和组织表达模式等进行分析。结果表明,共鉴定出39个CsMADS基因,不均匀分布在9条染色体上,编码的氨基酸数目介于146~503,等电点为5.19~10.12,分子质量为16 739.35~57 070.56 Da;亚细胞定位预测显示CsMADS基因均定位在细胞核里;保守结构域表明CsMADS基因均含有MADS保守结构域;GO功能注释分类共注释到331个GO terms,主要集中在分子功能中,共聚类178个;系统进化树显示CsMADS基因分为14个亚类,按照ABCDE同源异型基因模型分类,能够分别与拟南芥 (Arabidopsis thaliana) 中SQUA/AP1、AP3、PI、GGM13、AG、SEP/AGL2等类亚家族聚成一类;CsMADS基因上游启动子区具有丰富的顺式作用元件,其中主要为光调控元件;实时荧光定量PCR验证了部分CsMADS在花和苞片中相对表达量较高,具有组织表达特异性。本研究对大麻基因组中的MIKC型MADS-box家族进行鉴定和分析,为进一步探究MIKC型基因在调控药用植物大麻生长发育以及培育优良品种等方面奠定理论基础。
关键词:    大麻      MIKC型MADS-box      全基因组鉴定      功能分析      生物信息学     
Identification and expression analysis of the MIKC-type MADS-box gene family in Cannabis sativa L.
WAN Zhi-ting1, LU Meng1, WU Sha-sha1, MI Yao-lei2*, ZHAI Jun-wen1*
1. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization/College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2. Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Abstract:
The MIKC-type MADS-box gene family plays an important role in flower development in plants. This study identifies members of the MIKC-type gene family in Cannabis sativa L. at the genome level, with the chromosomal location and linkage, evolutionary relationships, and identification of conserved motifs determined using bioinformatics tools. The results show that C. sativa contains 39 members of the MIKC-type MADS-box gene family (named CsMADS1-CsMADS39) unevenly distributed on nine chromosomes. The encoded proteins range in length from 146 to 503 amino acids, and the theoretical isoelectric points range from 5.19 to 10.12. Molecular weights range from 16 739.35 to 57 070.56 Da. The subcellular location of CsMADS genes is mainly in the nucleus. The result of conserved domain analysis showed that all genes contain the MADS conserved domain. The analysis of GO showed that all genes were annotated to 331 GO terms, which were clustered by molecular function. A phylogenetic tree showed that CsMADS genes could be divided into 14 subclasses, according to ABCDE homologous gene model; CsMADS genes are clustered with SQUA/AP1, AP3, PI, GGM13, AG, SEP/AGL2 subfamilies in Arabidopsis. There are abundant cis-acting elements in the upstream promoter region of CsMADS genes, mainly light regulatory elements. The results of real-time fluorescent quantitative PCR showed that some CsMADS genes are highly expressed in flowers and bracts, with tissue-specific expression. This study identified and analyzed the MIKC-type MADS-box gene family in C. sativa at the genome level, and provides a theoretical basis for further exploration of the function of MIKC-type genes and their role in regulating the growth and development of medicinally important hemp.
Key words:    Cannabis sativa    MIKC-type MADS-box    genome-wide identification    functional analysis    bioinformatics   
收稿日期: 2021-06-18
DOI: 10.16438/j.0513-4870.2021-0892
基金项目: 中央级公益性科研院所基本科研业务费专项(ZXKT20020).
通讯作者: 米要磊,Tel:18650750580,E-mail:zhai-jw@163.com;翟俊文,Tel:86-10-64032658,E-mail:xiaomi20063@sina.com
Email: zhai-jw@163.com;xiaomi20063@sina.com
相关功能
PDF(7556KB) Free
打印本文
0
作者相关文章
万志庭  在本刊中的所有文章
鲁梦  在本刊中的所有文章
吴沙沙  在本刊中的所有文章
米要磊  在本刊中的所有文章
翟俊文  在本刊中的所有文章

参考文献:
[1] Elena R, Alvarez B, Soraya P, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J]. Proc Natl Acad Sci U S A, 2000, 97: 5328-5333.
[2] Annette B, Günter T. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol Phylogenet Evol, 2003, 29: 464-489.
[3] Ma H, Yanofsky MF, Meyerowitz EM. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J]. Genes Dev, 1991, 5: 484-495.
[4] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347: 183-198.
[5] Tang QL, Li NZ, Song M, et al. Identification of acting domains mediating the protein interactions between SVP and FLC in Brassica juncea Coss[J]. Acta Hort Sin (园艺研究), 2012, 39: 2395-2403.
[6] Gramzow L, Theissen G. A hitchhiker's guide to the MADS world of plants[J]. Gen Biol, 2010, 11: 214-225.
[7] Kwantes M, Liebsch D, Verelst W. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophyte[J]. Mol Biol Evol, 2012, 29: 293-302.
[8] Soltis DE, Ma H, Frohlich MW, et al. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression[J]. Trends Plant Sci, 2007, 12: 358-367.
[9] Guo P. The Phylogenetic Analysis of MADS-box Gene Family in Brassiceae Plants (十字花科MADS-box基因家族系统进化分析)[D]. Fuzhou: Fujian Agriculture & Forestry University, 2018.
[10] McPartland JM, Guy GW, Hegman W. Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies[J]. Veg Hist Archaeobot, 2018, 27: 635-648.
[11] William L, Zhang PZ, Ying DY, et al. Extrusion improves the phenolic profile and biological activities of hempseed (Cannabis sativa L.) hull[J]. Food Chem, 2021, 346: 128606.
[12] Irakli M, Tsaliki E, Kalivas A, et al. Effect of genotype and growing year on the nutritional, phytochemical, and antioxidant properties of industrial hemp (Cannabis sativa L.) seeds[J]. Antioxidants, 2019, 8: 491.
[13] ElSohly MA, Sladea D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids[J]. Life Sci, 2005, 78: 539-548.
[14] Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in cannabis[J]. Phytochem Rev, 2008, 7: 615-639.
[15] Giacoppo S, Mandolino G, Galuppo M, et al. Cannabinoids: new promising agents in the treatment of neurological diseases[J]. Molecules, 2014, 19: 18781-18816.
[16] Bai YJ, Zhou XY, Yuan Y, et al. Origin of medicinal Cannabis sativa and its early spread[J]. Chin Tradit Herb Drugs (中草药), 2019, 50: 5071-5079.
[17] Zager JJ, Lange I, Srividya N, et al. Gene networks underlying cannabinoid and terpenoid accumulation in Cannabis[J]. Plant Physiol, 2019, 180: 1877-1897.
[18] Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13: 1194-1202.
[19] Liu MQ, Sun W, Meng XX, et al. Identification and expression analysis of the C2H2 gene family in Cannabis sativa L[J]. Acta Pharm Sin (药学学报), 2021, 56: 1486-1496.
[20] Ren ZY, Yu DQ, Yang ZE, et al. Genome-wide identification of the MIKC-type MADS-box gene family in Gossypium hirsutum L. unravels their roles in flowering[J]. Front Plant Sci, 2017, 8: 384-400.
[21] de Folter S, Shchennikova AV, Franken J, et al. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis[J]. Plant J, 2006, 47: 934-946.
[22] Mondragón-Palomino M, Theissen G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the lowers of Orchidaceae: refining the ‘orchid code’[J]. Plant J, 2011, 66: 1008-1019.
[23] Hu RB, Fan CM, Li HY, et al. Analysis of MIKC-type MADS-box genes in Soybean (Glycine max)[J]. Mol Plant Breeding (分子植物育种), 2009, 7: 429-436.
[24] Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, et al. Genome-wide analysis of MIKCC-type MADS-box genes in grapevine[J]. Plant Physiol, 2009, 149: 354-369.
[25] Zhao YJ, Zhao HL, Wang YY, et al. Genome-wide identification and expression analysis of MIKC-Type MADS-Box gene family in Punica granatum L.[J]. Agronomy, 2020, 10: 1-10.
[26] Susanne S, Alice K, Sirui P, et al. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization[J]. New Phytol, 2020, 225: 511-529.
[27] He CM, Si C, Jaime A, et al. Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid[J]. BMC Plant Biol, 2019, 19: 223.
[28] Li CR, Dong N, Li XP, et al. A review of MADS-box genes, the molecular regulatory genes for floral organ development in Orchidaceae[J]. Acta Hort Sin (园艺学报), 2020, 47: 2047-2062.
[29] Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105-2110.
[30] Chandra S, Lata H, Khan IA, et al. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions[J]. Physiol Mol Biol Plants, 2008, 14: 299-306.
[31] Shen GX, Yang CH, Shen CY, et al. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms[J]. Biol Res, 2019, 52: 25.
相关文献:
1.刘美琦, 孙伟, 孟祥霄, 万会花, 刘廷霞, 孙嘉莹, 王震, 米要磊, 马伟.药用植物大麻C2H2基因家族鉴定与表达分析[J]. 药学学报, 2021,56(5): 1486-1496