药学学报, 2022, 57(1): 1-12
引用本文:
江文心, 张华清, 丁杨, 周建平. 抗肿瘤多药联用型纳米递送系统的研究进展[J]. 药学学报, 2022, 57(1): 1-12.
JIANG Wen-xin, ZHANG Hua-qing, DING Yang, ZHOU Jian-ping. Research progress in nano-drug delivery systems for antitumor multi-drug combinational application[J]. Acta Pharmaceutica Sinica, 2022, 57(1): 1-12.

抗肿瘤多药联用型纳米递送系统的研究进展
江文心1, 张华清1,2, 丁杨1,3*, 周建平1,2,3*
1. 中国药科大学, 天然药物活性组分与药效国家重点实验室, 江苏 南京 210009;
2. 中国药科大学, 药物质量控制与药物警戒教育部重点实验室, 江苏 南京 210009;
3. 国家药品监督管理局药物制剂及辅料研究与评价重点实验室, 江苏 南京 210009
摘要:
由于肿瘤病理复杂性,临床治疗中对于多种药物联合使用的需求日益迫切。多药联用可同时作用于多通路和多靶点发挥协同增效作用,然而目前临床多药联用的递送策略仍有较大优化空间。纳米药物递送系统可精准调控药物多组分灵活荷载,并携载药物克服生理、病理屏障,实现肿瘤组织、细胞的有效富集,完成持续、可控和靶向递送,实现抗肿瘤增效减毒,已在肿瘤多药联合治疗领域展现出广阔的前景,并成为药物研发的新方向之一。本文对近年来肿瘤联合用药治疗策略及其递送系统的研究进展进行了综述,并分析和探讨了多药联用型纳米递送系统的应用瓶颈、现有研究面临的挑战及未来的发展趋势。
关键词:    抗肿瘤      药物联用      纳米医学      药物递送系统      多模式治疗     
Research progress in nano-drug delivery systems for antitumor multi-drug combinational application
JIANG Wen-xin1, ZHANG Hua-qing1,2, DING Yang1,3*, ZHOU Jian-ping1,2,3*
1. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
2. Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China;
3. NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
Abstract:
Due to the complexity of tumor pathology, the demand for the combined use of multiple drugs in clinical treatment has become increasingly clear-cut. Multi-drug combination can act on multiple pathways and multiple targets simultaneously to exert synergistic effects. However, the current delivery strategy for multi-drug combination still needs to be optimized. Nano-drug delivery systems can carry drugs to overcome physiological and pathological barrier to target tumor tissues and cells, achieve the goal of continuous, controllable, and targeted delivery, and enhance the efficacy of anti-tumor synergism and detoxification. To meet the new requirements for smarter and more accurate antitumor multi-drug combinational therapy, the nano-drug delivery system has been well-designed to realize more functions. For instance, delivery of multiple drugs in accurate proportions and doses can make the multi-drug synergistic effect more precise; stimulus-responsive drug release can improve selectivity and reduce side effects; controlling the time-course relationship of multiple drugs can realize sequential drug combination effect. It has shown broad prospects in the field of tumor multidrug therapy and has become one of the new directions of research and development. This article reviews the recent developments in the application of tumor drug combination therapy strategies and their delivery systems, and analyzes the new requirements and challenges of multidrug combination for the development of nano-drug delivery systems.
Key words:    antitumor    drug combination    nanomedicine    drug delivery system    multimodal treatment   
收稿日期: 2021-05-25
DOI: 10.16438/j.0513-4870.2021-0787
基金项目: 国家自然科学基金资助项目(81872819,82073401,82073795);中国药科大学“双一流”建设计划(CPU2018GY26);江苏省高等学校重点学科发展基金资助项目
通讯作者: 丁杨,Tel:13913882339,E-mail:dydszyzf@163.com;周建平,E-mail:zhoujianping@cpu.edu.cn
Email: dydszyzf@163.com;zhoujianping@cpu.edu.cn
相关功能
PDF(6874KB) Free
打印本文
0
作者相关文章
江文心  在本刊中的所有文章
张华清  在本刊中的所有文章
丁杨  在本刊中的所有文章
周建平  在本刊中的所有文章

参考文献:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71:209-249.
[2] Del Fabbro E. Combination therapy in cachexia[J]. Ann Palliat Med, 2019, 8:59-66.
[3] Nanayakkara AK, Follit CA, Chen G, et al. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells[J]. Sci Rep, 2018, 8:967.
[4] Xu HT, Wu YH, Shi JF, et al. Progress in antitumor research of photothermal therapy combined with chemotherapy based on nanoscale co-loading strategy[J]. Acta Pharm Sin (药学学报) 2020, 55:86-95.
[5] Wang F, Zhang D, Zhang Q, et al. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel-polymer micelles to overcome multi-drug resistance[J]. Biomaterials, 2011, 32:9444-9456.
[6] Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells[J]. Mol Pharm, 2011, 8:185-203.
[7] Xiong XB, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin[J]. ACS Nano, 2011, 5:5202-5213.
[8] Quan Q, Wang Y, Wang F, et al. Real world first-line treatments and outcomes of Nab-paclitaxel plus gemcitabine, mFOLFIRINOX and GEMOX in unresectable pancreatic cancer from a Chinese single institution[J]. Curr Oncol, 2020, 28:209-219.
[9] Jin G, Wu Y, She Z, et al. Prophylactic Administration of recombinant human thrombopoietin in the secondary prevention of thrombocytopenia induced by XELOX adjuvant chemotherapy in patients with stage Ⅲ colorectal cancer[J]. Am J Ther, 2021, 28:e513-e516.
[10] Liu A, Wang H, Hou X, et al. Combinatory antitumor therapy by cascade targeting of a single drug[J]. Acta Pharm Sin B, 2020, 10:667-679.
[11] Wang R, Han Y, Sun B, et al. Deep tumor penetrating bioparticulates inspired burst intracellular drug release for precision chemo-phototherapy[J]. Small, 2018, 14:e1703110.
[12] Zhang H, Jin Y, Chi C, et al. Sponge particulates for biomedical applications:biofunctionalization, multi-drug shielding, and theranostic applications[J]. Biomaterials, 2021, 273:120824.
[13] Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery:an emerging approach for cancer therapy[J]. Drug Discov Today, 2012, 17:1044-1052.
[14] Li X, Yu C, Meng X, et al. Study of double-targeting nanoparticles loaded with MCL-1 siRNA and dexamethasone for adjuvant-induced arthritis therapy[J]. Eur J Pharm Biopharm, 2020, 154:136-143.
[15] Lakkadwala S, Rodrigues BDS, Sun C, et al. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma[J]. J Control Release, 2019, 307:247-260.
[16] Wang Q, Jiang H, Li Y, et al. Targeting NF-κB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy[J]. Biomaterials, 2017, 122:10-22.
[17] Yadav S, van Vlerken LE, Little SR, et al. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells[J]. Cancer Chemother Pharmacol, 2009, 63:711-722.
[18] Luther DC, Huang R, Jeon T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles[J]. Adv Drug Deliv Rev, 2020, 156:188-213.
[19] Zhang Q, Shen C, Zhao N, et al. Redox-responsive and drug-embedded silica nanoparticles with unique self-destruction features for efficient gene/drug codelivery[J]. Adv Funct Mater, 2017, 27:12.
[20] Li M, Yang YT, He Q, et al. Research progress of nanocarriers in tumor immunotherapy[J]. Acta Pharm Sin (药学学报), 2017, 1839-1848.
[21] Hu H, Lin Z, He B, et al. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel[J]. J Control Release, 2015, 220:189-200.
[22] Guidolin K, Zheng G. Nanomedicines lost in translation[J]. ACS Nano, 2019, 13:13620-13626.
[23] Li X, He G, Su F, et al. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma[J]. Asian J Pharm Sci, 2020, 15:739-751.
[24] Li M, Du C, Guo N, et al. Composition design and medical application of liposomes[J]. Eur J Med Chem, 2019, 164:640-653.
[25] Peng JQ, Zou Y, Xu JZ, et al. Preparation of dihydroartemisinin liposomes and evaluation of their antitumor activity in vitro[J]. Chin Tradit Herb Drugs (中草药), 2020, 51:4151-4159.
[26] Liu X, Tang I, Wainberg ZA, et al. Safety considerations of cancer nanomedicine-a key step toward translation[J]. Small, 2020, 16:e2000673.
[27] Zhang Z, Yue YX, Xu L, et al. Macrocyclic-amphiphile-based self-assembled nanoparticles for ratiometric delivery of therapeutic combinations to tumors[J]. Adv Mater, 2021, 33:e2007719.
[28] Meng H, Wang M, Liu H, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice[J]. ACS Nano, 2015, 9:3540-3557.
[29] Li R, Wu R, Zhao L, et al. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells[J]. ACS Nano, 2010, 4:1399-1408.
[30] Miao L, Guo S, Zhang J, et al. Nanoparticles with precise ratiometric co-loading and co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer[J]. Adv Funct Mater, 2014, 24:6601-6611.
[31] Mateen S, Raina K, Agarwal R. Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer[J]. Nutr Cancer, 2013, 65 Suppl 1:3-11.
[32] Zhu XX, Ding YH, Wu Y, et al. Silibinin:a potential old drug for cancer therapy[J]. Expert Rev Clin Pharmacol, 2016, 9:1323-1330.
[33] Huo M, Wang H, Zhang Y, et al. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation[J]. J Control Release, 2020, 321:198-210.
[34] Yin T, Chu X, Cheng J, et al. Hypoxia-sensitive zwitterionic vehicle for tumor-specific drug delivery through antifouling-based stable biotransport alongside PDT-sensitized controlled release[J]. Biomacromolecules, 2021, 22:2233-2247.
[35] Liu YH, Zhou JP, Huo MR. Research progress of tumor microenvironment-responsive intelligent nanomedicine carriers[J]. J China Pharm Univ (中国药科大学学报), 2016, 47:125-133.
[36] Hu C, Gao HL. Advances in tumor microenvironment responsive and regulatory drug delivery system[J]. Acta Pharm Sin (药学学报), 2020, 55:1520-1527.
[37] Davoodi P, Srinivasan MP, Wang CH. Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(epsilon-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA[J]. Acta Biomater, 2016, 39:79-93.
[38] Chen W, Yuan Y, Cheng D, et al. Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy[J]. Small, 2014, 10:2678-2687.
[39] Delbridge AR, Grabow S, Strasser A, et al. Thirty years of BCL-2:translating cell death discoveries into novel cancer therapies[J]. Nat Rev Cancer, 2016, 16:99-109.
[40] Song C, Ouyang Z, Guo H, et al. Core-shell tecto dendrimers enable enhanced tumor MR imaging through an amplified EPR effect[J]. Biomacromolecules, 2021, 22:2181-2188.
[41] Wang K, Hu Q, Zhu W, et al. Structure-invertible nanoparticles for triggered co-delivery of nucleic acids and hydrophobic drugs for combination cancer therapy[J]. Adv Funct Mater, 2015, 25:3380-3392.
[42] Wang Y, Huang G, Yang H, et al. Advances on nonviral vectors of CRISPR/Cas9 system for genome editing[J]. Acta Pharm Sin (药学学报), 2020, 55:2606-2617.
[43] Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles[J]. Adv Mater, 2019, 31:e1902575.
[44] Qiao C, Yang J, Shen Q, et al. Traceable nanoparticles with dual targeting and ROS response for RNAi-based immunochemotherapy of intracranial glioblastoma treatment[J]. Adv Mater, 2018, 30:e1705054.
[45] Zhang Y, Lu Y, Wang F, et al. ATP/pH dual responsive nanoparticle with d-[des-Arg(10)] kallidin mediated efficient in vivo targeting drug delivery[J]. Small, 2017, 13:14.
[46] Wang Y, Chen J, Liang X, et al. An ATP-responsive codelivery system of doxorubicin and MiR-34a to synergistically inhibit cell proliferation and migration[J]. Mol Pharm, 2017, 14:2323-2332.
[47] Xiong H, Wang C, Wang Z, et al. Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability[J]. J Control Release, 2019, 309:145-157.
[48] Gawrzak S, Rinaldi L, Gregorio S, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer[J]. Nat Cell Biol, 2018, 20:211-221.
[49] Wang Y, Xie Y, Li J, et al. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy[J]. ACS Nano, 2017, 11:2227-2238.
[50] Li Y, Lu H, Liang S, et al. Dual stable nanomedicines prepared by cisplatin-crosslinked camptothecin prodrug micelles for effective drug delivery[J]. ACS Appl Mater Interfaces, 2019, 11:20649-20659.
[51] Han Y, Ding B, Zhao Z, et al. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency[J]. Biomaterials, 2018, 185:205-218.
[52] Shao K, Singha S, Clemente-Casares X, et al. Nanoparticle-based immunotherapy for cancer[J]. ACS Nano, 2015, 9:16-30.
[53] Chen N, Wei M, Sun Y, et al. Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity[J]. Small, 2014, 10:368-375.
[54] Hao Y, Chen Y, He X, et al. Polymeric nanoparticles with ROS-responsive prodrug and platinum nanozyme for enhanced chemophotodynamic therapy of colon cancer[J]. Adv Sci (Weinh), 2020, 7:2001853.
[55] Bezu L, Gomes-de-Silva LC, Dewitte H, et al. Combinatorial strategies for the induction of immunogenic cell death[J]. Front Immunol, 2015, 6:187.
[56] Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, inflammation, andimmunity:a troika governing cancer and its treatment[J]. Cell, 2016, 166:288-298.
[57] Wang X, Li M, Ren K, et al. On-demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy[J]. Adv Mater, 2020, 32:e2002160.
[58] Shen S, Xu X, Lin S, et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells[J]. Nat Nanotechnol, 2021, 16:104-113.
[59] Luo S, Wang Y, Shen S, et al. IR780-loaded hyaluronic acid@gossypol-Fe(Ⅲ)-EGCG infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy[J]. Adv Funct Mater, 2021, 9:2100954.
[60] Zhou JP. Application and prospect of nanotechnology in drug delivery[J]. J China Pharm Univ (中国药科大学学报), 2020, 51:5-8.
相关文献:
1.黄领领, 吴宏辉, 许东航, 高建青.细胞膜仿生纳米技术在肿瘤靶向递药系统中的研究进展[J]. 药学学报, 2022,57(1): 85-97
2.邢昊楠, 陆梅, 刘瑛琪, 董雨函, 郑爱萍.基于外泌体的抗肿瘤药物靶向递送的研究进展[J]. 药学学报, 2022,57(1): 150-158