药学学报, 2022, 57(1): 13-24
引用本文:
李佩珊#, 刘懿萱#, 谢英#, 任钰歆, 陈铭, 王桂玲, 吕万良*. 肿瘤免疫检查点治疗及其药物递送策略[J]. 药学学报, 2022, 57(1): 13-24.
LI Pei-shan#, LIU Yi-xuan#, XIE Ying#, REN Yu-xin, CHEN Ming, WANG Gui-ling, LÜ Wan-liang*. Tumor immune checkpoint therapy and the drug delivery strategies[J]. Acta Pharmaceutica Sinica, 2022, 57(1): 13-24.

肿瘤免疫检查点治疗及其药物递送策略
李佩珊#, 刘懿萱#, 谢英#, 任钰歆, 陈铭, 王桂玲, 吕万良*
北京大学药学院, 天然药物及仿生药物国家重点实验室, 分子药剂学与新释药系统北京市重点实验室, 北京 100191
摘要:
肿瘤免疫检查点治疗是基于抑制消极免疫调节机制新原理而发展起来的临床治疗策略。本文对肿瘤免疫检查点治疗及其药物递送策略进行了综述和评述,主要包括免疫力与肿瘤治疗、免疫检查点治疗及其作用机制、免疫检查点治疗的临床应用及其药物、程序性死亡受体1(programmed cell death protein 1,PD1)/细胞程序性死亡受体配体1(programmed cell death 1 ligand 1,PDL1)治疗免疫耐药性与对策、免疫检查点治疗药物的递送策略等若干方面。肿瘤免疫检查点治疗作为一种变革性的免疫治疗新策略,其在多种类型肿瘤治疗中同比表现出明显的治疗优效。然而,肿瘤免疫检查点治疗也面临很大的挑战,即免疫治疗耐药性,随着肿瘤免疫检查点治疗新机制的不断发现,新的治疗药物及其递送策略的不断研发,可望进一步大幅度提升这种策略的临床疗效。
关键词:    肿瘤      免疫检查点治疗      免疫耐药性      程序性死亡受体1/细胞程序性死亡受体配体1      递送载体     
Tumor immune checkpoint therapy and the drug delivery strategies
LI Pei-shan#, LIU Yi-xuan#, XIE Ying#, REN Yu-xin, CHEN Ming, WANG Gui-ling, LÜ Wan-liang*
State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
Abstract:
Tumor immune checkpoint therapy is a clinical treatment strategy developed based on the new principle of the inhibition of negative immune regulation. In this article, the tumor immune checkpoint therapy and the drug delivery strategies were reviewed, mainly including immunity and tumor therapy, tumor immune checkpoint therapy and its mechanism of action, clinical application of tumor immune checkpoint therapy and therapeutic drugs, immune resistance of programmed cell death protein 1 (PD1)/programmed cell death ligand 1 (PDL1) treatment and countermeasures, drug delivery strategies for tumor immune checkpoint therapeutic agents, etc. As a revolutionary new immunotherapy strategy, tumor immune checkpoint therapy has shown obvious superior therapeutic efficacy in a variety types of tumor. However, tumor immune checkpoint therapy is also faced with a big challenge, namely, immunotherapy resistance. With the discovery of new mechanism, the continuous development of new therapeutic drugs and delivery strategies, tumor immune checkpoint therapy is expected to further improve the clinical efficacy of tumor.
Key words:    neoplasm    immune checkpoint inhibitor    immune tolerance    programmed cell death protein 1/programmed cell death ligand 1    drug delivery system   
收稿日期: 2021-08-06
DOI: 10.16438/j.0513-4870.2021-1150
基金项目: 国家自然科学基金资助项目(82173752,81874303)
通讯作者: 吕万良,Tel:86-10-82802683,Fax:86-10-82802684,E-mail:luwl@bjmu.edu.cn
Email: luwl@bjmu.edu.cn
相关功能
PDF(933KB) Free
打印本文
0
作者相关文章
李佩珊#  在本刊中的所有文章
刘懿萱#  在本刊中的所有文章
谢英#  在本刊中的所有文章
任钰歆  在本刊中的所有文章
陈铭  在本刊中的所有文章
王桂玲  在本刊中的所有文章
吕万良*  在本刊中的所有文章

参考文献:
[1] Dunn G, Bruce A, Ikeda H, et al. Cancer immunoediting:from immunosurveillance to tumor escape[J]. Nat Immunol, 2002, 3:991-998.
[2] O'Donnell J, Teng M, Smyth M. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16:151-167.
[3] Haque S, Morris JC. Transforming growth factor-β:a therapeutic target for cancer[J]. Hum Vaccin Immunother, 2017, 13:1741-1750.
[4] Alotaibi MR, Hassan ZK, Al-Rejaie SS, et al. Characterization of apoptosis in a breast cancer cell line after IL-10 silencing[J]. Asian Pac J Cancer Prev, 2018, 19:777-783.
[5] Vesely M, Kershaw M, Schreiber R, et al. Natural innate and adaptive immunity to cancer[J]. Annu Rev Immunol, 2011, 29:235-271.
[6] Workman CJ, Dugger KJ, Vignali DA. Cutting edge:molecular analysis of the negative regulatory function of lymphocyte activation gene-3[J]. J Immunol, 2002, 169:5392-5395.
[7] Sakuishi K, Ngiow SF, Sullivan JM, et al. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer[J]. Oncoimmunology, 2013, 2:e23849.
[8] Yu X, Harden K, Gonzalez LC, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10:48-57.
[9] Le Mercier I, Chen W, Lines JL, et al. VISTA regulates the development of protective antitumor immunity[J]. Cancer Res, 2014, 74:1933-1944.
[10] Picarda E, Ohaegbulam KC, Zang X. Molecular pathways:targeting B7-H3(CD276) for human cancer immunotherapy[J]. Clin Cancer Res, 2016, 22:3425-3431.
[11] Leone RD, Lo YC, Powell JD. A2aR antagonists:next generation checkpoint blockade for cancer immunotherapy[J]. Comput Struct Biotechnol J, 2015, 13:265-272.
[12] Ghalamfarsa G, Kazemi MH, Raoofi Mohseni S, et al. CD73 as a potential opportunity for cancer immunotherapy[J]. Expert Opin Ther Targets, 2019, 23:127-142.
[13] Paulos CM, June CH. Putting the brakes on BTLA in T cell-mediated cancer immunotherapy[J]. J Clin Invest, 2010, 120:76-80.
[14] Colak S, Ten Dijke P. Targeting TGF-β signaling in cancer[J]. Trends Cancer, 2017, 3:56-71.
[15] Long EO, Barber DF, Burshtyn DN, et al. Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158)[J]. Immunol Rev, 2001, 181:223-233.
[16] Gyori D, Chessa T, Hawkins PT, et al. Class (I) phosphoinositide 3-kinases in the tumor microenvironment[J]. Cancers (Basel), 2017, 9:24.
[17] Liu X, Kwon H, Li Z, et al. Is CD47 an innate immune checkpoint for tumor evasion?[J]. J Hematol Oncol, 2017, 10:12.
[18] Lu H. TLR agonists for cancer immunotherapy:tipping the balance between the immune stimulatory and inhibitory effects[J]. Front Immunol, 2014, 5:83.
[19] Moon YW, Hajjar J, Hwu P, et al. Targeting the indoleamine 2, 3-dioxygenase pathway in cancer[J]. J Immunother Cancer, 2015, 3:51.
[20] Tomala J, Kovar M. IL-2/anti-IL-2 mAb immunocomplexes:a renascence of IL-2 in cancer immunotherapy?[J]. Oncoimmunology, 2015, 5:e1102829.
[21] Vesely M, Kershaw M, Schreiber R, et al. Natural innate and adaptive immunity to cancer[J]. Annu Rev Immunol, 2011, 29:235-237.
[22] Robert C, Ribas A, Schachter J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006):post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study[J]. Lancet Oncol, 2019, 20:1239-1251.
[23] Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J, 1992, 11:3887-3895.
[24] Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci U S A, 2002, 99:12293-12297.
[25] Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells[J]. Int Immunol, 2005, 17:133-144.
[26] Schumacher T, Schreiber R. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348:69-74.
[27] Hulpke S, Baldauf C, Tampé R. Molecular architecture of the MHC I peptide-loading complex:one tapasin molecule is essential and sufficient for antigen processing[J]. FASEB J, 2012, 26:5071-5080.
[28] Ribas A. Adaptive immune resistance:how cancer protects from immune attack[J]. Cancer Discov, 2015, 5:915-919.
[29] Cooper Z, Juneja V, Sage P, et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade[J]. Cancer Immunol Res, 2014, 2:643-654.
[30] Wherry E, Kurachi M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15:486-499.
[31] Yeon S, Jung S, Jo Y, et al. Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma[J]. Pathol Res Pract, 2019, 215:209-214.
[32] Anagnostou V, Smith K, Forde P, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer[J]. Cancer Discov, 2017, 7:264-276.
[33] Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer[J]. Cancer Discov, 2017, 7:1420-1435.
[34] Lei Q, Wang D, Sun K, et al. Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors[J]. Front Cell Dev Biol, 2020, 8:672.
[35] Jiang Y, Chen M, Nie H, et al. PD-1 and PD-L1 in cancer immunotherapy:clinical implications and future considerations[J]. Hum Vaccin Immunother, 2019, 15:1111-1122.
[36] Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer[J]. N Engl J Med, 2018, 379:2040-2051.
[37] Gandhi L, Rodriguez-Abreu D, Gadgeel SF, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378:2078-2092.
[38] Long GV, Dummer R, Ribas A, et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage ⅢB-IV melanoma[J]. J Clin Oncol, 2016, 34:9568.
[39] Gibney GT, Kudchadkar RR, DeConti RC, et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma[J]. Clin Cancer Res, 2015, 21:712-720.
[40] Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2017, 547:217-221.
[41] Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer:a secondary analysis of the KEYNOTE-001 phase 1 trial[J]. Lancet Oncol, 2017, 18:895-903.
[42] Takeda Y, Kataoka K, Yamagishi J, et al. A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy[J]. Cell Rep, 2017, 19:1874-1887.
[43] Kapp K, Volz B, Oswald D. Beneficial modulation of the tumor microenvironment and generation of antitumor responses by TLR9 agonist lefitolimod alone and in combination with checkpoint inhibitors[J]. Oncoimmunology, 2019, 8:e1659096.
[44] Liang Y, Tang H, Guo J, et al. Targeting IFNα to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance[J]. Nat Commun, 2018, 9:4586.
[45] Limagne E, Richard C, Thibaudin M, et al. Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patients[J]. Oncoimmunology, 2019, 8:e1564505.
[46] Hung AL, Maxwell R, Theodros D, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM[J]. Oncoimmunology, 2018, 7:e1466769.
[47] Ngiow SF, Young A, Blake SJ, et al. Agonistic CD40 mAb-driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor[J]. Cancer Res, 2016, 76:6266-6277.
[48] Tang H, Wang Y, Chlewicki LK, et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade[J]. Cancer Cell, 2016, 29:285-296.
[49] Mariathasan S, Turley SJ, Nickles D, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554:544-548.
[50] Martin CJ, Datta A, Littlefield C, et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape[J]. Sci Transl Med, 2020, 12:eaay8456.
[51] Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models[J]. Cancer Res, 2014, 74:5057-5069.
[52] Sugiyama D, Nishikawa H, Maeda Y, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3CCD4C regulatory T cells, evoking antitumor immune responses in humans[J]. Proc Natl Acad Sci U S A, 2013, 110:17945-17950.
[53] Highfill SL, Cui Y, Giles AJ, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy[J]. Sci Transl Med, 2014, 6:237ra267.
[54] De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells[J]. Nature, 2016, 539:443-447.
[55] Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy[J]. Nature, 2015, 527:249-253.
[56] Spranger S, Koblish HK, Horton B, et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(C) T cells directly within the tumor microenvironment[J]. J Immunother Cancer, 2014, 2:3.
[57] Willingham SB, Ho PY, Hotson A, et al. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models[J]. Cancer Immunol, 2018, 6:1136-1149.
[58] Fong L, Hotson A, Powderly JD, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer[J]. Cancer Discov, 2020, 10:40-53.
[59] Hay CM, Sult E, Huang Q, et al. Targeting CD73 in the tumor microenvironment with MEDI9447[J]. Oncoimmunology, 2016, 5:e1208875.
[60] Cooper ZA, Juneja VR, Sage PT, et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade[J]. Cancer Immunol Res, 2014, 2:643-654.
[61] Ribas A, Lawrence D, Atkinson V, et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma[J]. Nat Med, 2019, 25:936-940.
[62] Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350:1084-1089.
[63] Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359:104-108.
[64] Duperret E, Trautz A, Stoltz R, et al. Synthetic DNA-encoded monoclonal antibody delivery of anti-CTLA-4 antibodies induces tumor shrinkage in vivo[J]. Cancer Res, 2018, 78:6363-6370.
[65] Lin A, Twitty C, Burnett R, et al. Retroviral replicating vector delivery of miR-PDL1 inhibits immune checkpoint PDL1 and enhances immune responses in vitro[J]. Mol Ther Nucleic Acids, 2017, 6:221-232.
[66] Reul J, Frisch J, Engeland C, et al. Tumor-specific delivery of immune checkpoint inhibitors by engineered AAV vectors[J]. Front Oncol, 2019, 9:52.
[67] Zhao T, Wei T, Guo J, et al. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide[J]. Cell Death Dis, 2019, 10:164.
[68] Gurbatri C, Lia I, Vincent R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies[J]. Sci Transl Med, 2020, 12:eaax0876.
[69] Oberli M, Reichmuth A, Dorkin J, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy[J]. Nano Lett, 2017, 17:1326-1335.
[70] Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap[J]. Nat Commun, 2018, 9:2237.
[71] Zhang X, Wang C, Wang J, et al. PD-1 blockade cellular vesicles for cancer immunotherapy[J]. Adv Mater, 2018, 30:e1707112.
[72] Zhang X, Wang J, Chen Z, et al. Engineering PD-1-presenting platelets for cancer immunotherapy[J]. Nano Lett, 2018, 18:5716-5725.
[73] Wang C, Ye Y, Hochu G, et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of antiPD1 antibody[J]. Nano Lett, 2016, 16:2334-2340.
[74] Ye Y, Wang J, Hu Q, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors[J]. ACS Nano, 2016, 10:8956-8963.
[75] Ruan H, Hu Q, Wen D, et al. A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade[J]. Adv Mater, 2019, 31:e1806957.
[76] Song H, Yang P, Huang P, et al. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy[J]. Theranostics, 2019, 9:2299-2314.
[77] Wang C, Sun W, Ye Y, et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy[J]. Nat Biomed Eng, 2017, 2:525-532.
[78] Hu Q, Sun W, Wang J, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments antileukaemia efficacy[J]. Nat Biomed Eng, 2018, 2:831-840.
[79] Sima R, Marieke F, Jan W, et al. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer[J]. Biomaterials, 2015, 61:33-40.
[80] Wang D, Wang T, Yu H, et al Engineering nanoparticles to locally activate T cells in the tumor microenvironment[J]. Sci Immunol, 2019, 4:eaau6584.
相关文献:
1.邱晓涵, 李泳江, 吴军勇, 蔡佳歆, 刘季华, 徐文杰, 向大雄.细菌外膜囊泡:疾病治疗的新途径[J]. 药学学报, 2021,56(12): 3441-3450
2.张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟.外泌体作为药物递送载体的研究进展[J]. 药学学报, 2019,54(6): 1010-1016