药学学报, 2022, 57(1): 134-141
引用本文:
王朝辉, 刘玉玲*. 抗肿瘤纳米药物的临床转化进展及展望[J]. 药学学报, 2022, 57(1): 134-141.
WANG Zhao-hui, LIU Yu-ling*. Progress and prospect in the clinical translation of cancer nanomedicine[J]. Acta Pharmaceutica Sinica, 2022, 57(1): 134-141.

抗肿瘤纳米药物的临床转化进展及展望
王朝辉, 刘玉玲*
中国医学科学院药物研究所, 天然药物活性物质与功能国家重点实验室, 药物传输技术与新型制剂北京市重点实验室, 北京 100050
摘要:
纳米技术在肿瘤的治疗和诊断领域已显示出广阔的前景。目前有近80个抗肿瘤纳米药物处于临床研究阶段,多个产品获批上市,不仅增强了肿瘤治疗效果,并且降低了不良反应。然而,由于在相关的基础研究、生产控制和临床试验等方面存在诸多屏障,造成了转化率极低。本文从临床转化角度出发,综述了抗肿瘤纳米药物的发展、临床应用现状、面临的挑战与机遇,对纳米药物设计与临床试验策略方面进行了前沿性展望。
关键词:    肿瘤治疗      纳米药物      靶向治疗      临床转化      患者筛选      生物标记物     
Progress and prospect in the clinical translation of cancer nanomedicine
WANG Zhao-hui, LIU Yu-ling*
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Nanotechnology has shown broad application prospects in the diagnosis and treatment of cancer. Currently, nearly 80 cancer nanomedicines are under clinical investigation, and many have been approved with enhanced anti-tumor efficacy and decreased side effects. However, the presence of various barriers in related basic research, process control and clinical trials lead to extremely low translation rate. From the perspective of clinical commercialization, we summarized the progress, clinical status, challenges and opportunities of cancer nanomedicine, and presented a cutting-edge prospect on the rational design of nanomedicine and clinical trial strategies.
Key words:    tumor therapy    nanomedicine    targeted therapy    clinical translation    patient stratification    biomarker   
收稿日期: 2021-08-30
DOI: 10.16438/j.0513-4870.2021-1259
基金项目: 中国医学科学院中央级公益性科研院所基本科研业务费专项资金(2020-RC350-002,2021-RC350-001);中国医学科学院医学与健康科技创新工程项目(2021-1-I2M-026)
通讯作者: 刘玉玲,Tel:86-10-63159373,E-mail:ylliu@imm.ac.cn
Email: ylliu@imm.ac.cn
相关功能
PDF(983KB) Free
打印本文
0
作者相关文章
王朝辉  在本刊中的所有文章
刘玉玲*  在本刊中的所有文章

参考文献:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71:209-249.
[2] Gonzalez-Valdivieso J, Girotti A, Schneider J, et al. Advanced nanomedicine and cancer:challenges and opportunities in clinical translation[J]. Int J Pharm, 2021, 599:120438.
[3] Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy:challenges, opportunities, and clinical applications[J]. J Control Release, 2015, 200:138-157.
[4] Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine:progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17:20-37.
[5] de Lazaro I, Mooney DJ. Obstacles and opportunities in a forward vision for cancer nanomedicine[J]. Nat Mater, 2021. DOI:10.1038/s41563-021-01047-7.
[6] He H, Liu L, Morin EE, et al. Survey of clinical translation of cancer nanomedicines-lessons learned from successes and failures[J]. Acc Chem Res, 2019, 52:2445-2461.
[7] Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics[J]. Nat Commun, 2018, 9:1410.
[8] Sun QH, Sun XR, Ma XP, et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs[J]. Adv Mater, 2014, 26:7615-7621.
[9] de Lazaro I, Mooney DJ. A nanoparticle's pathway into tumours[J]. Nat Mater, 2020, 19:486-487.
[10] Gao MY, Fu JX, Wang XT. Major progress in tumor accumulation and penetration of nanomedicine[J]. Acta Pharm Sin (药学学报), 2021, 56:138-145.
[11] Mahmoudi M, Bertrand N, Zope H. et al. Emerging understanding of the protein corona at the nano-bio interfaces[J]. Nano Today, 2016, 11:817-832.
[12] Chen FF, Wang GK, Griffin JI. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo[J]. Nat Nanotechnol, 2017, 12:387-393.
[13] Ju Y, Kelly HG, Dagley LF, et al. Person-specific biomolecular coronas modulate nanoparticle interactions with immune cells in human blood[J]. ACS Nano, 2020, 14:15723-15737.
[14] Hayashi Y, Takamiya M, Jensen PB, et al. Differential nanoparticle sequestration by macrophages and scavenger endothelial cells visualized in vivo in real-time and at ultrastructural resolution[J]. ACS Nano, 2020, 14:1665-1681.
[15] Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nat Biotechnol, 2015, 33:941-951.
[16] Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to pegylated-micelle carrier systems:a review[J]. Sci Technol Adv Mat, 2019, 20:324-336.
[17] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy-mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res, 1986, 46:6387-6392.
[18] Bertrand N, Wu J, Xu XY, et al. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology[J]. Adv Drug Deliv Rev, 2014, 66:2-25.
[19] Nakamura Y, Mochida A, Choyke PL, et al. Nanodrug delivery:is the enhanced permeability and retention effect sufficient for curing cancer?[J]. Bioconjug Chem, 2016, 27:2225-2238.
[20] Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine[J]. Nat Mater, 2013, 12:958-962.
[21] Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes[J]. ACS Nano, 2015, 9:6985-6995.
[22] Yang H, Tong ZR, Sun SC, et al. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers[J]. J Control Release, 2020, 328:28-44.
[23] Weniger M, Honselmann KC, Liss AS. The extracellular matrix and pancreatic cancer:a complex relationship[J]. Cancers (Basel), 2018, 10:316.
[24] Stylianopoulos T, Poh MZ, Insin N, et al. Diffusion of particles in the extracellular matrix:the effect of repulsive electrostatic interactions[J]. Biophys J, 2010, 99:1342-1349.
[25] Lee H, Fonge H, Hoang B, et al. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles[J]. Mol Pharm, 2010, 7:1195-1208.
[26] Miller MA, Zheng YR, Gadde S, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(iv) pro-drug[J]. Nat Commun, 2015, 6:8692.
[27] Korangath P, Barnett JD, Sharma A, et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer[J]. Sci Adv, 2020, 6:eaay1601.
[28] Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine[J]. Adv Drug Deliv Rev, 2019, 143:68-96.
[29] Wang ZH, Luo M, Mao CQ, et al. A redox-activatable fluorescent sensor for the high-throughput quantification of cytosolic delivery of macromolecules[J]. Angew Chem Int Edit, 2017, 56:1319-1323.
[30] Boddapati SV, D'Souza GGM, Erdogan S, et al. Organelle-targeted nanocarriers:specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo[J]. Nano Lett, 2008, 8:2559-2563.
[31] Brand W, Noorlander CW, Giannakou C, et al. Nanomedicinal products:a survey on specific toxicity and side effects[J]. Int J Nanomed, 2017, 12:6107-6129.
[32] Hong DVS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal MIR-34A mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122:1630-1637.
[33] Stone V, Johnston H, Schins RPF. Development of in vitro systems for nanotoxicology:methodological considerations[J]. Crit Rev Toxicol, 2009, 39:613-626.
[34] Szebeni J, Muggia F, Gabizon A, et al. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products:prediction and prevention[J]. Adv Drug Deliv Rev, 2011, 63:1020-1030.
[35] Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation[J]. Drug Deliv Transl Res, 2020, 10:721-725.
[36] Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8:543-557.
[37] Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy:challenges, opportunities, and clinical applications[J]. J Control Release, 2015, 200:138-157.
[38] Zamboni WC, Torchilin V, Patri AK, et al. Best practices in cancer nanotechnology:perspective from NCI nanotechnology alliance[J]. Clin Cancer Res, 2012, 18:3229-3241.
[39] Choi SYC, Lin D, Gout PW, et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer[J]. Adv Drug Deliv Rev, 2014, 79-80:222-237.
[40] Sharpless NE, DePinho RA. Model organisms-the mighty mouse:genetically engineered mouse models in cancer drug development[J]. Nat Rev Drug Discov, 2006, 5:741-754.
[41] Zhang W, Wang F, Hu C, et al. The progress and perspective of nanoparticle-enabled tumor metastasis treatment[J]. Acta Pharm Sin B, 2020, 10:2037-2053.
[42] Bogart LK, Pourroy G, Murphy CJ, et al. Nanoparticles for imaging, sensing, and therapeutic intervention[J]. ACS Nano, 2014, 8:3107-3122.
[43] van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine[J]. Nat Nanotechnol, 2019, 14:1007-1017.
[44] Chen HM, Zhang WZ, Zhu GZ, et al. Rethinking cancer nanotheranostics[J]. Nat Rev Mater, 2017, 2:17024.
[45] Bravaccini S, Puccetti M, Bocchini M, et al. Psma expression:a potential ally for the pathologist in prostate cancer diagnosis[J]. Sci Rep, 2018, 8:4254.
[46] Fourquet A, Lahmi L, Rusu T, et al. Restaging the biochemical recurrence of prostate cancer with[Ga-68] Ga-PSMA-11 PET/CT:diagnostic performance and impact on patient disease management[J]. Cancers, 2021. DOI:10.3390/cancers13071594.
[47] Miller MA, Gadde S, Pfirschke C, et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle[J]. Sci Transl Med, 2015, 7:314ra183.
[48] Ramanathan RK, Korn RL, Raghunand N, et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors:a pilot study[J]. Clin Cancer Res, 2017, 23:3638-3648.
[49] Lee H, Shields AF, Siegel BA, et al. Cu-64-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer[J]. Clin Cancer Res, 2017, 23:4190-4202.
[50] Edmonds S, Volpe A, Shmeeda H, et al. Exploiting the metal-chelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomal nanomedicines[J]. ACS Nano, 2016, 10:10294-10307.
[51] Qi RG, Wang YH, Bruno PM, et al. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer[J]. Nat Commun, 2017, 8:2166.
[52] Miao L, Li LX, Huang YX, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation[J]. Nat Biotechnol, 2019, 37:1174-1185.
[53] Zhang Y, Li N, Suh H, et al. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity[J]. Nat Commun, 2018, 9:6.
[54] Wang-Gillam A, Li CP, Bodoky G. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1):a global, randomised, open label, phase 3 trial[J]. Lancet, 2016, 387:545-557.
[55] Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels[J]. Nat Commun, 2013, 4:2516.
[56] Abumanhal-Masarweh H, Koren L, Zinger A, et al. Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin[J]. J Control Release, 2019, 296:1-13.
[57] Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov, 2019, 18:175-196.
[58] Pfirschke C, Engblom C, Rickelt S, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy[J]. Immunity, 2016, 44:343-354.
[59] Zhang F, Huang D, Zhao L, et al. Efficacy and safety of PD-1/PD-L1 inhibitors plus nab-paclitaxel for patients with non-small cell lung cancer who have progressed after platinum-based chemotherapy[J]. Ther Adv Med Oncol, 2020. DOI:10.1177/1758835920936882.
[60] Miller MA, Chandra R, Cuccarese MF, et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts[J]. Sci Transl Med, 2017, 9:eaal0225.
[61] Dimcevski G, Kotopoulis S, Bjanes T, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer[J]. J Control Release, 2016, 243:172-181.
[62] Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016, 1:16014.
[63] Fang RH, Kroll AV, Gao WW, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30:e1706759.
[64] Hu C, Gao HL. Advances in tumor microenvironment responsive and regulatory drug delivery system[J]. Acta Pharm Sin (药学学报). 2020, 55:1520-1527.
[65] Sun CX, Ju YM, Dai JJ. Research progress in tumor microenvironmentally modulating nanostructures[J]. Acta Pharm Sin (药学学报). 2021, 56:1016-1024.
[66] Wu W, Li TL. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers[J]. Adv Drug Deliv Rev, 2019, 143:1-2.
[67] Luo M, Wang H, Wang ZH, et al. A STING-activating nanovaccine for cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12:648-654.
[68] Zhu YF, Yu XR, Thamphiwatana SD, et al. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy[J]. Acta Pharm Sin B, 2020, 10:2054-2074.
[69] Du HL, Zhao S, Wang YQ, et al. pH/cathepsin B hierarchical-responsive nanoconjugates for enhanced tumor penetration and chemo-immunotherapy[J]. Adv Funct Mater, 2020. DOI:10.1002/adfm.202003757.
[70] Miller MA, Mikula H, Luthria G, et al. Modular nanoparticulate prodrug design enables efficient treatment of solid tumors using bioorthogonal activation[J]. ACS Nano, 2018, 12:12814-12826.
[71] Shreffler JW, Pullan JE, Dailey KM, et al. Overcoming hurdles in nanoparticle clinical translation:the influence of experimental design and surface modification[J]. Int J Mol Sci, 2019, 20:6056.
[72] Luo YY, Li JJ, Hu YC, et al. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on "two strikes" effects[J]. Acta Pharm Sin B, 2020, 10:2227-2245.
[73] Editorial. The two directions of cancer nanomedicine[J]. Nat Nanotechnol, 2019, 14:1083.
[74] Valencia PM, Basto PA, Zhang LF, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing[J]. ACS Nano, 2010, 4:1671-1679.
[75] Xu J, Wong DHC, Byrne JD, et al. Future of the particle replication in nonwetting templates (PRINT) technology[J]. Angew Chem Int Ed, 2013, 52:6580-6589.
[76] LeSavage BL, Suhar RA, Broguiere N, et al. Next-generation cancer organoids[J]. Nat Mater, 2021. DOI:10.1038/s41563-021-01057-5.
[77] Albanese A, Lam AK, Sykes EA, et al. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport[J]. Nat Commun, 2013, 4:2718.
[78] Neufeld L, Yeini E, Reisman N, et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment[J]. Sci Adv, 2021. DOI:10.1126/sciadv.abi9119.
相关文献:
1.官娟, 陆伟跃, 占昌友.血浆蛋白对脂质体体内性能的调控[J]. 药学学报, 2019,54(12): 2240-2250