|
|
药学学报, 2022, 57(2): 313-320 |
|
|
引用本文: |
|
|
刘京虹, 陈怡敏, 蔡晓青*. 靶向蛋白质降解的新兴技术及其研究进展[J]. 药学学报, 2022, 57(2): 313-320. |
|
|
LIU Jing-hong, CHEN Yi-min, CAI Xiao-qing*. Research advances in new technologies in targeted protein degradation[J]. Acta Pharmaceutica Sinica, 2022, 57(2): 313-320. |
|
|
|
|
|
|
|
靶向蛋白质降解的新兴技术及其研究进展 |
|
刘京虹, 陈怡敏, 蔡晓青* |
|
中山大学药学院, 广东 广州 510000 |
摘要: |
靶向蛋白质降解技术是近十年来迅速发展起来的一项干扰蛋白质功能的重要技术。目前该领域发展最为成熟的是基于泛素化-蛋白酶体系统的蛋白水解靶向嵌合体(proteolysis-targeting chimera,PROTAC)技术。随着降解机制和降解对象的拓展,近几年相继涌现出各类新型靶向蛋白质降解技术,包括溶酶体靶向嵌合体(lysosome-targeting chimera,LYTAC)技术、自噬靶向嵌合体(autophagy-targeting chimera,AUTAC)技术、自噬小体绑定化合物(autophagosome-tethering compound,ATTEC)技术以及分子伴侣介导的自噬(chaperone-mediated autophagy,CMA)嵌合体技术。新兴的靶向蛋白质降解技术探索真核细胞内的另一重要蛋白质降解体系——溶酶体降解系统,如内吞-溶酶体途径和自噬-溶酶体途径。本综述从各类蛋白质降解系统出发,总结各类蛋白质降解技术的作用机制和特点,重点介绍几类新兴技术的研究现状、优势和存在的问题。 |
关键词:
靶向蛋白质降解
蛋白水解靶向嵌合体
溶酶体靶向嵌合体
自噬靶向嵌合体
自噬小体绑定化合物
分子伴侣介导的自噬
|
|
Research advances in new technologies in targeted protein degradation |
|
LIU Jing-hong, CHEN Yi-min, CAI Xiao-qing* |
|
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510000, China |
Abstract: |
In recent years, the targeted protein degradation technology has developed quickly, with proteolysis-targeting chimera (PROTAC) as the best-known strategy through exploring the ubiquitin-proteasome system. A number of new targeted protein degradation strategies have been emerging to expand the scope of protein degradation technology, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs) and chimeras based on chaperone-mediated autophagy (CMA). The emerging methodologies have explored another important protein degradation system in eukaryotes-lysosomal systems, such as the endosome-lysosome pathway and the autophagy-lysosome pathway. This review summaries the mechanisms and features of different strategies for targeted protein degradation, with a special emphasis on the new targeted protein degradation technologies, such as their current status, advantages and limitations. |
Key words:
targeted protein degradation
proteolysis-targeting chimera
lysosome-targeting chimera
autophagy-targeting chimera
autophagosome-tethering compound
chaperone-mediated autophagy
|
|
收稿日期: 2021-08-30
|
DOI: 10.16438/j.0513-4870.2021-1249 |
基金项目: 国家自然科学基金资助项目(82173723);广东省基础与应用基础研究基金资助项目(2020A1515010712). |
通讯作者: 蔡晓青,Tel/Fax:86-20-39943006,E-mail:caixq7@mail.sysu.edu.cn
Email: caixq7@mail.sysu.edu.cn |
|
|
|
|
|
|
|
参考文献: |
|
|
[1] Banik SM, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins[J]. Nature, 2020, 584:291-297. [2] Ahn G, Banik SM, Bertozzi CR. Degradation from the outside in:targeting extracellular and membrane proteins for degradation through the endolysosomal pathway[J]. Cell Chem Biol, 2021, 28:1072-1080. [3] Adjei AA. What is the right dose? The elusive optimal biologic dose in phase I clinical trials[J]. J Clin Oncol, 2006, 24:4054-4055. [4] Xie QH, Hu ZY, Ning WT, et al. The research progress of PROTACs for breast cancer treatment[J]. Acta Pharm Sin (药学学报), 2020, 55:2053-2061. [5] Gopal P, Dick T. Targeted protein degradation in antibacterial drug discovery?[J]. Prog Biophys Mol Biol, 2020, 152:10-14. [6] Salami J, Crews CM. Waste disposal-an attractive strategy for cancer therapy[J]. Science, 2017, 355:1163-1167. [7] Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery[J]. Cell, 2020, 181:102-114. [8] Duan YC, Zhai XY, Qin WP, et al. Advances in the treatment of cancer by PROTACs[J]. Acta Pharm Sin (药学学报), 2017, 52:1801-1810. [9] Pickart CM. Back to the future with ubiquitin[J]. Cell, 2004, 116:181-190. [10] Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation[J]. Biochem J, 2002, 363:417-429. [11] Han Y, Da Y, Yu M, et al. Protein labeling approach to improve lysosomal targeting and efficacy of antibody-drug conjugates[J]. Org Biomol Chem, 2020, 18:3229-3233. [12] Le Roy C, Wrana JL. Clathrin-and non-clathrin-mediated endocytic regulation of cell signalling[J]. Nat Rev Mol Cell Biol, 2005, 6:112-126. [13] Kandimalla V, Neeta N, Karanth N, et al. Regeneration of ethyl parathion antibodies for repeated use in immunosensor:a study on dissociation of antigens from antibodies[J]. Biosens Bioelectron, 2004, 20:903-906. [14] Li W, Nie T, Xu H, et al. Chaperone-mediated autophagy:advances from bench to bedside[J]. Neurobiol Dis, 2019, 122:41-48. [15] Zhu Q, Lin F. Molecular makers of autophagy[J]. Acta Pharm Sin (药学学报), 2016, 51:33-38. [16] Maniaci C, Ciulli A. Bifunctional chemical probes inducing protein-protein interactions[J]. Curr Opin Chem Biol, 2019, 52:145-156. [17] Flanagan JJ, Neklesa TK. Targeting nuclear receptors with PROTAC degraders[J]. Mol Cell Endocrinol, 2019, 493:110452. [18] Liu J, Ma J, Liu Y, et al. PROTACs:a novel strategy for cancer therapy[J]. Semin Cancer Biol, 2020, 67:171-179. [19] Wang Y, Long J, Chang Q, et al. The application of small molecule PROTAC in researches of different targets[J]. Acta Pharm Sin (药学学报), 2020, 55:446-452. [20] Reynders M, Matsuura BS, Bérouti M, et al. PROTACs enable optical control of protein degradation[J]. Sci Adv, 2020, 6:eaay5064. [21] Maneiro M, Forte N, Shchepinova MM, et al. Antibody-PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4[J]. ACS Chem Biol, 2020, 15:1306-1312. [22] Cotton AD, Nguyen DP, Gramespacher JA, et al. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1[J]. J Am Chem Soc, 2021, 143:593-598. [23] Klein VG, Townsend CE, Testa A, et al. Understanding and improving the membrane permeability of VH032-based PROTACs[J]. ACS Med Chem Lett, 2020, 11:1732-1738. [24] Ding Y, Fei Y, Lu B. Emerging new concepts of degrader technologies[J]. Trends Pharmacol Sci, 2020, 41:464-474. [25] Ahn G, Banik SM, Miller CL, et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation[J]. Nat Chem Biol, 2021, 17:937-946. [26] Zhou Y, Teng P, Montgomery NT, et al. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins[J]. ACS Cent Sci, 2021, 7:499-506. [27] Takahashi D, Arimoto H. Targeting selective autophagy by AUTAC degraders[J]. Autophagy, 2020, 16:765-766. [28] Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus[J]. Science, 2004, 306:1037-1040. [29] Lu SL, Kawabata T, Cheng YL, et al. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes[J]. PLoS Pathog, 2017, 13:e1006444. [30] Takahashi D, Moriyama J, Nakamura T, et al. AUTACs:cargo-specific degraders using selective autophagy[J]. Mol Cell, 2019, 76:797-810. [31] Li Z, Wang C, Wang Z, et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds[J]. Nature, 2019, 575:203-209. [32] Li Z, Zhu C, Ding Y, et al. ATTEC:a potential new approach to target proteinopathies[J]. Autophagy, 2020, 16:185-187. [33] Kaushik S, Cuervo AM. Chaperone-mediated autophagy:a unique way to enter the lysosome world[J]. Trends Cell Biol, 2012, 22:407-417. [34] Fan X, Jin WY, Lu J, et al. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation[J]. Nat Neurosci, 2014, 17:471-480. [35] Wang H, Yao H, Li C, et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity[J]. Nat Chem Biol, 2019, 15:42-50. [36] Zhou YF, Wang J, Deng MF, et al. The peptide-directed lysosomal degradation of CDK5 exerts therapeutic effects against stroke[J]. Aging Dis, 2019, 10:1140-1145. [37] Mason JM. Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention[J]. Future Med Chem, 2010, 2:1813-1822. |
|
|
|
|
|
|
|
|
|
|
|