药学学报, 2022, 57(3): 557-567
引用本文:
张小楠, 李占强, 芦殿香. 基于肺血管细胞增殖抑制的肺动脉高压治疗药物[J]. 药学学报, 2022, 57(3): 557-567.
ZHANG Xiao-nan, LI Zhan-qiang, LU Dian-xiang. Treatment of pulmonary hypertension based on inhibition of pulmonary vascular cell proliferation[J]. Acta Pharmaceutica Sinica, 2022, 57(3): 557-567.

基于肺血管细胞增殖抑制的肺动脉高压治疗药物
张小楠1,2,3, 李占强1,2*, 芦殿香1,2*
1. 青海大学高原医学研究中心, 青海 西宁 810001;
2. 高原医学教育部重点实验室, 青海省高原医学应用基础重点实验室 (青海-犹他高原医学联合重点实验室), 青海 西宁 810001;
3. 青海省人民医院, 青海 西宁 810007
摘要:
肺动脉高压(pulmonary hypertension,PH)是一种进展迅速的肺血管疾病,预后不良,最终导致右心衰竭和死亡。肺小动脉的重塑是PH的重要病理特征。位于肺动脉中层的肺动脉平滑肌细胞(pulmonary arterial smooth muscle cells,PASMCs)表现出类似于肿瘤细胞的异常增殖和抗凋亡特征,是肺血管重塑的主要启动因素。本文主要讨论在PASMCs增殖中起关键作用的信号通路以及对细胞增殖通路为靶点的抑制剂的最新研究进展做一综述,以期为PH的靶向治疗提供新的视角。
关键词:    肺动脉高压      肺动脉平滑肌细胞      肺血管重塑      细胞周期      增殖信号通路     
Treatment of pulmonary hypertension based on inhibition of pulmonary vascular cell proliferation
ZHANG Xiao-nan1,2,3, LI Zhan-qiang1,2*, LU Dian-xiang1,2*
1. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China;
2. Key Laboratory of High Altitude Medicine, Ministry of Education;Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Xining 810001, China;
3. Qinghai Provincial People's Hospital, Xining 810007, China
Abstract:
Pulmonary hypertension is a rapidly progressing disease of the lung vasculature with poor prognosis, ultimately leading to right heart failure and death. The remodeling of small pulmonary arteries represents an important pathological characteristic of pulmonary hypertension. Pulmonary arterial smooth muscle cells (PASMCs) located in the middle layer of pulmonary artery exhibit hyperproliferation and resistance to apoptosis, which is the main initiator of pulmonary vascular remodeling and similar to that seen in tumor cells. In this review we focus on the signaling pathways that play a key role in PASMCs proliferation and the latest research progress on inhibitors targeting cell proliferation pathways to provide a new perspective for the treatment of PH.
Key words:    pulmonary hypertension    pulmonary arterial smooth muscle cell    pulmonary vascular remodeling    cell cycle    proliferative signaling pathway   
收稿日期: 2021-07-31
DOI: 10.16438/j.0513-4870.2021-1126
基金项目: 国家自然科学基金资助项目(82060786,81860768,32060088);青海省科技厅自然科学基金面上资助项目(2021-ZJ-907);中国科学院西部之光项目。
通讯作者: 李占强,Tel:13389753453,E-mail:zhanqiang_li@163.com;芦殿香,Tel:15209719728,E-mail:ludianxiang@126.com
Email: zhanqiang_li@163.com;ludianxiang@126.com
相关功能
PDF(1563KB) Free
打印本文
0
作者相关文章
张小楠  在本刊中的所有文章
李占强  在本刊中的所有文章
芦殿香  在本刊中的所有文章

参考文献:
[1] Pulmonary Embolism and Pulmonary Vascular Disease Group R and Society CMA. Chinese guidelines for the diagnosis and treatment of pulmonary hypertension (the 2021 version)[J]. Natl Med J China (中华医学杂志), 2021, 101:11-51.
[2] Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53:1801913.
[3] Rafikova O, Al Ghouleh I, Rafikov R. Focus on early events:pathogenesis of pulmonary arterial hypertension development[J]. Antioxid Redox Signal, 2019, 31:933-953.
[4] Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension:state of the art and research perspectives[J]. Eur Respir J, 2019, 53:1801887.
[5] Schermuly RT, Ghofrani HA, Wilkins MR, et al. Mechanisms of disease:pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2011, 8:443-455.
[6] Guignabert C, Tu L, Le Hiress M, et al. Pathogenesis of pulmonary arterial hypertension:lessons from cancer[J]. Eur Respir Rev, 2013, 22:543-551.
[7] Boucherat O, Vitry G, Trinh I, et al. The cancer theory of pulmonary arterial hypertension[J]. Pulm Cir, 2017, 7:285-299.
[8] Merklinger SL, Jones PL, Martinez EC, et al. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension[J]. Circulation, 2005, 112:423-431.
[9] Dahal BK, Cornitescu T, Tretyn A, et al. Role of epidermal growth factor inhibition in experimental pulmonary hypertension[J]. Am Respir Crit Care Med, 2010, 181:158-167.
[10] Izikki M, Guignabert C, Fadel E, et al. Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents[J]. J Clin Invest, 2009, 119:512-523.
[11] Goncharova EA, Ammit AJ, Irani C, et al. PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells[J]. Am J Physio Lung Cell Mol Physiol, 2002, 283:L354-L363.
[12] Garat CV, Crossno JT, Sullivan TM, et al. Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells[J]. J Cardiovasc Pharmacol, 2013, 62:539-548.
[13] Seyfarth HJ, Hammerschmidt S, Halank M, et al. Everolimus in patients with severe pulmonary hypertension:a safety and efficacy pilot trial[J]. Pulm Circ, 2013, 3:632-638.
[14] Zhang Y, Xie X, Zhu Y, et al. Inhibition of Notch3 prevents monocrotaline-induced pulmonary arterial hypertension[J]. Exp Lung Res, 2015, 41:435-443.
[15] Savai R, Al-Tamari HM, Sedding D, et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension[J]. Nat Med, 2014, 20:1289-1300.
[16] Abud EM, Maylor J, Undem C, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice[J]. Proc Natl Acad Sci U S A, 2012, 109:1239-1244.
[17] Hu CJ, Poth JM, Zhang H, et al. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension[J]. Eur Respir J, 2019, 54:1900378.
[18] Dai Z, Zhu MM, Peng Y, et al. Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF-2α inhibitor[J]. Am J Respir Crit Care Med, 2018, 198:1423-1434.
[19] Thenappan T, Ormiston ML, Ryan JJ, et al. Pulmonary arterial hypertension:pathogenesis and clinical management[J]. BMJ, 2018, 360:j5492.
[20] Zhang H, Wang D, Li M, et al. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/ptbp1(polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis[J]. Circulation, 2017, 136:2468-2485.
[21] Weiss A, Neubauer MC, Yerabolu D, et al. Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension[J]. Nat Commun, 2019, 10:2204.
[22] Thompson AAR, Lawrie A. Targeting vascular remodeling to treat pulmonary arterial hypertension[J]. Trends Mol Med, 2017, 23:31-45.
[23] Pullamsetti SS, Savai R, Seeger W, et al. Translational advances in the field of pulmonary hypertension. From cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs[J]. Am J Respir Crit Care Med, 2017, 195:425-437.
[24] Hume S, Dianov GL, Ramadan K. A unified model for the G1/S cell cycle transition[J]. Nucleic Acids Res, 2020, 48:12483-12501.
[25] Dick FA, Rubin SM. Molecular mechanisms underlying Rb protein function[J]. Nat Rev Mol Cell Biol, 2013, 14:297-306.
[26] Goel S, DeCristo MJ, McAllister SS, et al. Cdk4/6 inhibition in cancer:beyond cell cycle arrest[J]. Trends Cell Biol, 2018, 28:911-925.
[27] Dyson NJ. Rb1:a prototype tumor suppressor and an enigma[J]. Genes Dev, 2016, 30:1492-1502.
[28] Roskoski R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs[J]. Pharmacol Res, 2016, 107:249-275.
[29] Malumbres M, Barbacid M. Cell cycle, cdks and cancer:a changing paradigm[J]. Nat Rev Cancer, 2009, 9:153-166.
[30] Montani D, Chaumais MC, Guignabert C, et al. Targeted therapies in pulmonary arterial hypertension[J]. Pharmacol Ther, 2014, 141:172-191.
[31] Nakamura K, Akagi S, Ogawa A, et al. Pro-apoptotic effects of imatinib on PDGF-stimulated pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension[J]. Int J Cardiol, 2012, 159:100-106.
[32] Vantler M, Karikkineth BC, Naito H, et al. PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue[J]. J Mol Cell Cardiol, 2010, 48:1316-1323.
[33] Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition[J]. J Clin Invest, 2005, 115:2811-2821.
[34] Hoeper MM, Barst RJ, Bourge RC, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension:results of the randomized impres study[J]. Circulation, 2013, 127:1128-1138.
[35] Maurer B, Reich N, Juengel A, et al. FRA-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis[J]. Ann Rheum Dis, 2012, 71:1382-1387.
[36] Guignabert C, Phan C, Seferian A, et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension[J]. Br J Clin Invest, 2016, 126:3207-3218.
[37] Özgür Yurttaş N, Eşkazan AE. Dasatinib-induced pulmonary arterial hypertension[J]. Br J Clin Pharmacol, 2018, 84:835-845.
[38] Ciuclan L, Bonneau O, Hussey M, et al. A novel murine model of severe pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2011, 184:1171-1182.
[39] Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy[J]. Cells, 2020, 9:198.
[40] De Luca A, Maiello MR, D'Alessio A, et al. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways:role in cancer pathogenesis and implications for therapeutic approaches[J]. Expert Opin Ther Targets, 2012, 16 Suppl 2:S17-S27.
[41] Awad KS, Elinoff JM, Wang S, et al. RAF/ERK drives the prolife-rative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310:L187-L201.
[42] Lane KB, Blackwell TR, Runo J, et al. Aberrant signal transduction in pulmonary hypertension[J]. Chest, 2005, 128:564s-565s.
[43] Hopper RK, Feinstein JA, Manning MA, et al. Neonatal pulmonary arterial hypertension and Noonan syndrome:two fatal cases with a specific RAF1 mutation[J]. Am J Med Genet A, 2015, 167A:882-885.
[44] Zhou C, Chen Y, Kang W, et al. miR-455-3p-1 represses FGF7 expression to inhibit pulmonary arterial hypertension through inhibiting the RAS/ERK signaling pathway[J]. J Mol Cell Cardiol, 2019, 130:23-35.
[45] Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension[J]. Physiol Genomics, 2008, 33:278-291.
[46] Kojonazarov B, Sydykov A, Pullamsetti SS, et al. Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling[J]. Int J Cardiol, 2013, 167:2630-2637.
[47] Gomberg-Maitland M, Maitland ML, Barst RJ, et al. A dosing/cross-development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension[J]. Clin Pharmacol Ther, 2010, 87:303-310.
[48] Kimura G, Kataoka M, Inami T, et al. Sorafenib as a potential strategy for refractory pulmonary arterial hypertension[J]. Pulm Pharmacol Ther, 2017, 44:46-49.
[49] Dienstmann R, Rodon J, Serra V, et al. Picking the point of inhibition:a comparative review of PI3K/AKT/MTOR pathway inhibitors[J]. Mol Cancer Ther, 2014, 13:1021-1031.
[50] Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking[J]. Nat Rev Mol Cell Biol, 2019, 20:515-534.
[51] Houssaini A, Abid S, Mouraret N, et al. Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2013, 48:568-577.
[52] Guo Y, Liu X, Zhang Y, et al. 3-Bromopyruvate ameliorates pulmonary arterial hypertension by improving mitochondrial metabolism[J]. Life Sci, 2020, 256:118009.
[53] Liu P, Gu Y, Luo J, et al. Inhibition of src activation reverses pulmonary vascular remodeling in experimental pulmonary arterial hypertension via AKT/MTOR/HIF-1 signaling pathway[J]. Exp Cell Res, 2019, 380:36-46.
[54] Ogawa A, Firth AL, Yao W, et al. Inhibition of mTor attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297:L666-L676.
[55] Wang AP, Li XH, Yang YM, et al. A critical role of the mTor/eif2α pathway in hypoxia-induced pulmonary hypertension[J]. PLoS One, 2015, 10:e0130806.
[56] Yang Y, Yin L, Zhu M, et al. Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal[J]. Biomed Pharmacother, 2021, 133:111056.
[57] Li J, Kim SG, Blenis J. Rapamycin:one drug, many effects[J]. Cell Metab, 2014, 19:373-379.
[58] Nishimura T, Faul JL, Berry GJ, et al. 40-O- (2-Hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats[J]. Am J Respir Crit Care Med, 2001, 163:498-502.
[59] Paddenberg R, Stieger P, von Lilien AL, et al. Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice[J]. Respir Res, 2007, 8:15.
[60] Goncharov DA, Kudryashova TV, Ziai H, et al. Mammalian target of rapamycin complex 2(mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension[J]. Circulation, 2014, 129:864-874.
[61] Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development[J]. Science, 1999, 284:770-776.
[62] Li MX, Gu SL, Ying MF, et al. Advances in research on Notch signaling pathway in pulmonary vascular remodeling of pulmonary arterial hypertension[J]. Chin Pharmacol Bull (中国药理学通报), 2020, 36:5-8.
[63] Kopan R, Ilagan MX. The canonical notch signaling pathway:unfolding the activation mechanism[J]. Cell, 2009, 137:216-233.
[64] Choy L, Hagenbeek TJ, Solon M, et al. Constitutive Notch3 signaling promotes the growth of basal breast cancers[J]. Cancer Res, 2017, 77:1439-1452.
[65] Gu ZY, Wang L, Gao CJ. Abnormal Notch-Hes signaling pathways and acute leukemia[J]. J Exp Hematol (中国实验血液学杂志), 2017, 25:240-243.
[66] Baeten JT, Lilly B. Notch signaling in vascular smooth muscle cells[J]. Adv Pharmacol, 2017, 78:351-382.
[67] Song Y, Zhang Y, Jiang H, et al. Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27KIP1 signaling pathway[J]. FEBS Open Bio, 2015, 5:656-660.
[68] Li XD, Zhang X, Leathers R, et al. Notch3 signaling promotes the development of pulmonary arterial hypertension[J]. Nat Med, 2009, 15:1289-1297.
[69] Chen X, Zhou W, Hu Q, et al. Exploration of the Notch3-Hes5 signal pathway in monocrotaline-induced pulmonary hypertension using rat model[J]. Congenit Heart Dis, 2019, 14:396-402.
[70] Wang W, Liu J, Ma A, et al. Mtorc1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch3[J]. J Cell Physiol, 2014, 229:2117-2125.
[71] Lai YJ, Chang GJ, Yeh YH, et al. Propylthiouracil attenuates experimental pulmonary hypertension via suppression of pen-2, a key component of gamma-secretase[J]. PLoS One, 2015, 10:e0137426.
[72] Takebe N, Nguyen D, Yang SX. Targeting Notch signaling pathway in cancer:clinical development advances and challenges[J]. Pharmacol Ther, 2014, 141:140-149.
[73] Ghahhari NM, Babashah S. Interplay between micrornas and Wnt/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer[J]. Eur J Cancer, 2015, 51:1638-1649.
[74] Pataki CA, Couchman JR, Brábek J. Wnt signaling cascades and the roles of syndecan proteoglycans[J]. J Histochem Cytochem, 2015, 63:465-480.
[75] De A. Wnt/Ca2+ signaling pathway:a brief overview[J]. Acta Biochim Biophys Sin, 2011, 43:745-756.
[76] Kahn M. Can we safely target the wnt pathway?[J]. Nat Rev Drug Discov, 2014, 13:513-532.
[77] Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer:an in-depth literature review[J]. World J Exp Med, 2015, 5:84-102.
[78] de Jesus Perez V, Yuan K, Alastalo TP, et al. Targeting the Wnt signaling pathways in pulmonary arterial hypertension[J]. Drug Discov Today, 2014, 19:1270-1276.
[79] Quasnichka H, Slater SC, Beeching CA, et al. Regulation of smooth muscle cell proliferation by beta-catenin/t-cell factor signaling involves modulation of cyclin D1 and p21 expression[J]. Circ Res, 2006, 99:1329-1337.
[80] Sklepkiewicz P, Schermuly RT, Tian X, et al. Glycogen synthase kinase 3beta contributes to proliferation of arterial smooth muscle cells in pulmonary hypertension[J]. PLoS One, 2011, 6:e18883.
[81] Yu XM, Wang L, Li JF, et al. Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304:L103-L111.
[82] Yuan K, Shamskhou EA, Orcholski ME, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension[J]. Circulation, 2019, 139:1710-1724.
[83] Zhou J, Wang JX. Advances in the role and mechanism of FOXO in promoting tumor genesis and development[J]. Oncol Prog (癌症进展), 2020, 18:343-346.
[84] Laissue P. The forkhead-box family of transcription factors:key molecular players in colorectal cancer pathogenesis[J]. Mol Cancer, 2019, 18:5.
[85] Weng XK, Sun F, Yu JP. Recent advances of FOXO in cancer[J]. Oncol Prog (癌症进展), 2021, 19:541-544.
[86] O'Regan RM, Nahta R. Targeting forkhead box M1 transcription factor in breast cancer[J]. Biochem Pharmacol, 2018, 154:407-413.
[87] Raghavan A, Zhou G, Zhou Q, et al. Hypoxia-induced pulmonary arterial smooth muscle cell proliferation is controlled by forkhead box M1[J]. Am J Respir Cell Mol Biol, 2012, 46:431-436.
[88] Dai J, Zhou Q, Tang H, et al. Smooth muscle cell-specific foxm1 controls hypoxia-induced pulmonary hypertension[J]. Cell Signal, 2018, 51:119-129.
[89] Bourgeois A, Lambert C, Habbout K, et al. FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension[J]. J Mol Med (Berl), 2018, 96:223-235.
[90] Dai Z, Zhu MM, Peng Y, et al. Endothelial and smooth muscle cell interaction via FOXM1 signaling mediates vascular remodeling and pulmonary hypertension[J]. Am J Respir Crit Care Med, 2018, 198:788-802.
[91] Gu L, Liu HM. Forkhead box M1 transcription factor:a novel target for pulmonary arterial hypertension therapy[J]. World J Pediatr, 2020, 16:113-119.
[92] Calvier L, Boucher P, Herz J, et al. LRP1 deficiency in vascular SMC leads to pulmonary arterial hypertension that is reversed by PPARγ activation[J]. Circ Res, 2019, 124:1778-1785.
[93] Tseng V, Sutliff RL, Hart CM. Redox biology of peroxisome proliferator-activated receptor-γ in pulmonary hypertension[J]. Antioxid Redox Signal, 2019, 31:874-897.
[94] Prins KW, Thenappan T, Weir EK, et al. Repurposing medications for treatment of pulmonary arterial hypertension:what's old is new again[J]. J Am Heart Assoc, 2019, 8:e011343.
[95] Rashid J, Nozik-Grayck E, McMurtry IF, et al. Inhaled combination of sildenafil and rosiglitazone improves pulmonary hemodynamics, cardiac function, and arterial remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316:L119-L130.
[96] Jiang F, Xing X, Wang X, et al. Drugs and drug delivery stra-tegies for treatment of pulmonary arterial hypertension[J]. Acta Pharm Sin (药学学报), 2021, 56:1332-1342.
[97] Heidbreder M, Fröhlich F, Jöhren O, et al. Hypoxia rapidly activates HIF-3alpha mRNA expression[J]. FASEB J, 2003, 17:1541-1543.
[98] Clerici C, Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296:L267-L274.
[99] Pullamsetti SS, Mamazhakypov A, Weissmann N, et al. Hypoxia-inducible factor signaling in pulmonary hypertension[J]. J Clin Invest, 2020, 130:5638-5651.
[100] Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9:47-71.
[101] Veith C, Schermuly RT, Brandes RP, et al. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension[J]. J Physiol, 2016, 594:1167-1177.
[102] Brusselmans K, Compernolle V, Tjwa M, et al. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia[J]. J Clin Invest, 2003, 111:1519-1527.
[103] Shimoda LA, Manalo DJ, Sham JS, et al. Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysio-logical responses to hypoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2001, 281:L202-L208.
[104] Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha[J]. J Clin Invest, 1999, 103:691-696.
[105] Ball MK, Waypa GB, Mungai PT, et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α[J]. Am J Respir Crit Care Med, 2014, 189:314-324.
[106] Malczyk M, Veith C, Fuchs B, et al. Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension[J]. Am J Respir Crit Care Med, 2013, 188:1451-1459.
[107] Veith C, Zakrzewicz D, Dahal BK, et al. Hypoxia- or PDGF-BB-dependent paxillin tyrosine phosphorylation in pulmonary hypertension is reversed by HIF-1α depletion or imatinib treatment[J]. Thromb Haemost, 2014, 112:1288-1303.
[108] Chen W, Hill H, Christie A, et al. Targeting renal cell carcinoma with a HIF-2 antagonist[J]. Nature, 2016, 539:112-117.
[109] Cowburn AS, Crosby A, Macias D, et al. HIF2α-arginase axis is essential for the development of pulmonary hypertension[J]. Proc Natl Acad Scie U S A, 2016, 113:8801-8806.
[110] Dai Z, Li M, Wharton J, et al. Prolyl-4 hydroxylase 2(PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia-inducible factor-2α[J]. Circulation, 2016, 133:2447-2458.
[111] Tang H, Babicheva A, McDermott KM, et al. Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314:L256-L275.
[112] Zhang HF, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-1 synthesis and block tumor growth[J]. Proc Natl Acad Sci U S A, 2008, 105:19579-19586.
[113] Ji L, Li ZQ, Lu DX. Recent advances of HIF-2α in pulmonary hypertension[J]. Acta Pharm Sin (药学学报), 2022, 57:277-286.
[114] Farber HW, Miller DP, Poms AD, et al. Five-year outcomes of patients enrolled in the reveal registry[J]. Chest, 2015, 148:1043-1054.
[115] Lythgoe MP, Rhodes CJ, Ghataorhe P, et al. Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future[J]. Pharmacol Ther, 2016, 164:195-203.