药学学报, 2022, 57(3): 576-592
引用本文:
徐淑静#, 张续杰#, 丁当, 刘新泳*, 展鹏*. 抗病毒药物研究中的生物无机化学策略[J]. 药学学报, 2022, 57(3): 576-592.
XU Shu-jing#, ZHANG Xu-jie#, DING Dang, LIU Xin-yong*, ZHAN Peng*. Bioinorganic chemistry strategies in antiviral drug discovery[J]. Acta Pharmaceutica Sinica, 2022, 57(3): 576-592.

抗病毒药物研究中的生物无机化学策略
徐淑静#, 张续杰#, 丁当, 刘新泳*, 展鹏*
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
病毒感染疾病严重威胁人类生命健康与社会发展。研发高效抗耐药性的新型抗病毒药物是临床长期迫切需求和长期持续性的研究工作。生物无机化学在抗病毒药物研究领域发挥着不可或缺的作用。本文精选近年经典案例,总结了生物无机化学在抗病毒药物研究领域中的作用,涵盖金属酶、金属配合物、类金属有机化合物及无机纳米材料等方面;并探讨了生物无机化学在抗病毒药物研究领域所面临的机遇、挑战和未来发展方向。
关键词:    抗病毒药物      生物无机化学      抑制剂      药物设计      药物化学     
Bioinorganic chemistry strategies in antiviral drug discovery
XU Shu-jing#, ZHANG Xu-jie#, DING Dang, LIU Xin-yong*, ZHAN Peng*
Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Over the course of human civilization, viral infections have been a part of human life and still represent one of the heaviest burdens for human and society, with a huge devastating socioeconomic impact. Inorganic and bioinorganic chemistry have made important contributions to medical science and human health in the past half century. In this paper, we selected the representative cases in recent years, and reviewed the research progress of antiviral drug discovery from the perspective of bioinorganic chemistry.
Key words:    antiviral drug    bioinorganic chemistry    inhibitor    drug design    medicinal chemistry   
收稿日期: 2021-08-02
DOI: 10.16438/j.0513-4870.2021-1132
基金项目: 国家自然科学基金资助项目(81773574,81973181,82173677);山东省杰出青年基金资助项目(ZR2020JQ31);山东省重大科技创新工程项目(2019JZZY021011)。
通讯作者: 刘新泳,E-mail:xinyongl@sdu.edu.cn;展鹏,E-mail:zhanpeng1982@sdu.edu.cn
Email: xinyongl@sdu.edu.cn;zhanpeng1982@sdu.edu.cn
相关功能
PDF(6658KB) Free
打印本文
0
作者相关文章
徐淑静#  在本刊中的所有文章
张续杰#  在本刊中的所有文章
丁当  在本刊中的所有文章
刘新泳*  在本刊中的所有文章
展鹏*  在本刊中的所有文章

参考文献:
[1] Sun YY, Kang DW, Gao SH, et al. Recent advances in the research of nucleoside antiviral agents[J]. Chin J Med Chem (中国药物化学杂志), 2021, 31:55-75.
[2] Fu ZP, Kang DW, Liu XY, et al. Advances of research on target-based anti-AIDS drugs[J]. Prog Pharm Sci (药学进展)[J]. 2020, 44:681-697.
[3] Qi WT, Ju H, Hou LX, et al. Basic pharmaceutical knowledge in SARS-CoV-2 detection and drug discovery[J]. Univ Chem (大学化学), 2020, 35:21-28.
[4] Jiang XY, Li J, Wei XY, et al. Advances in Chikungunya virus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:754-762.
[5] Tao YC, Hao X, Liu XY, et al. Advances in the discovery of anti-enterovirus-71 agents[J]. Acta Pharm Sin (药学学报), 2020, 55:744-753.
[6] Fu ZP, Zhou ZX, Liu XY, et al. Advances in the study of antiviral natural products[J]. Acta Pharm Sin (药学学报), 2020, 55:703-719.
[7] Zhang T, Zhou ZX, Zhan P, et al. New progress in medicinal chemistry of anti-poxvirus drugs research[J]. Acta Pharm Sin (药学学报), 2020, 55:734-743.
[8] Liang RP, Zhao T, Zhan P, et al. Research progress on the West Nile virus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:763-772.
[9] Sun YY, Zuo XF, Zhan P, et al. Recent advances in the discovery and development of adenovirus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:720-733.
[10] Ren YJ, Zhang S, Wei FJ, et al. Recent advances in the discovery and development of Ebola virus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:694-702.
[11] Dong Y, Zhan P, Liu XY. New progress in anti-norovirus drugs and vaccines[J]. Acta Pharm Sin (药学学报), 2020, 55:640-651.
[12] Li J, Liu XY, Zhan P. Advances in human cytomegalovirus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:585-596.
[13] Ma Y, Wei FJ, Yu J, et al. Advances in research on HBV inhibitors based in new targets (1):capsid protein inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:554-565.
[14] Huang TG, Sun L, Zhan P, et al. Recent advances in the research of broad-spectrum antiviral agents[J]. Acta Pharm Sin (药学学报), 2020, 55:679-693.
[15] Wei WX, Jing LL, Liu XY, et al. New progress in medicinal chemistry of anti-herpesviruses drug research[J]. Acta Pharm Sin (药学学报), 2020, 55:575-584.
[16] Wei FJ, Ma Y, Yu J, et al. Advances in research on HBV inhibitors based on new targets (2):RNase H and others[J]. Acta Pharm Sin (药学学报), 2020, 55:566-574.
[17] Li Z, Jia RF, Zhan P, et al. Progress on the discovery and development of anti-zika virus agents[J]. Acta Pharm Sin (药学学报), 2020, 55:627-639.
[18] Song S, Gao P, Zhan P, et al. Recent progress in inhibitors against hepatitis C virus[J]. Acta Pharm Sin (药学学报), 2020, 55:652-668.
[19] Hou LX, Ju H, Zhan P, et al. Recent advances in the discovery of dengue virus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:669-678.
[20] Xu SJ, Liu XY, Zhan P. New progress in research on respiratory syncytial virus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:597-610.
[21] Xiu SY, Zhang J, Ju H, et al. Progress on IFV drug targets and small molecule inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:611-626.
[22] Li J, Jiang XY, Xu SJ, et al. Medicinal chemistry strategies in seeking coronavirus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:537-553.
[23] Huo ZP, Zuo XF, Kang DW, et al. Progress on AIDS drug targets and small molecule inhibitors[J]. Acta Pharm Sin (药学学报), 2018, 53:356-374.
[24] Ma Y, Frutos-Beltrán E, Kang D, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses[J]. Chem Soc Rev, 2021, 50:4514-4540.
[25] Wang K. Future bioinorganic chemistry-editor's viewpoints[J]. Prog Chem (化学进展), 2013, 25:431-434.
[26] Mao WZ, An Y, Ji LN. Consideration on the development strategy of bioinorganic chemistry in China[J]. Prog Chem (化学进展), 2004, 16:660-666.
[27] Cohen SM. New approaches for medicinal applications of bioinorganic chemistry[J]. Curr Opin Chem Biol, 2007, 11:115-120.
[28] Giannakopoulou E, Pardali V, Zoidis G. Metal-chelating agents against viruses and parasites[J]. Future Med Chem, 2018, 10:1283-1285.
[29] Rogolino D, Carcelli M, Sechi M, et al. Viral enzymes containing magnesium:metal binding as a successful strategy in drug design[J]. Coordin Chem Rev, 2012, 256:3063-3086.
[30] Maertens GN, Engelman AN, Cherepanov P. Structure and function of retroviral integrase[J]. Nat Rev Microbiol, 2022, 20:20-34.
[31] Ju H, Zhang J, Huang B, et al. Inhibitors of influenza virus polymerase acidic (PA) endonuclease:contemporary developments and perspectives[J]. J Med Chem, 2017, 60:3533-3551.
[32] Kharkwal H, Kumar BK, Murugesan S, et al. Search for new therapeutics against HIV-1via dual inhibition of RNase H and integrase:current status and future challenges[J]. Future Med Chem, 2021, 13:269-286.
[33] Tavis JE, Zoidis G, Meyers MJ, et al. Approaches to inhibiting the hepatitis B virus ribonuclease H[J]. ACS Infect Dis, 2019, 5:655-658.
[34] Xu HT, Colby-Germinario SP, Hassounah S, et al. Identification of a pyridoxine-derived small-molecule inhibitor targeting dengue virus RNA-dependent RNA polymerase[J]. Antimicrob Agents Chemother, 2015, 60:600-608.
[35] Masaoka T, Zhao H, Hirsch DR, et al. Characterization of the C-terminal nuclease domain of herpes simplex virus pUL15 as a target of nucleotidyltransferase inhibitors[J]. Biochemistry, 2016, 55:809-819.
[36] Bongarzone S, Nadal M, Kaczmarska Z, et al. Structure-driven discovery of α,γ-diketoacid inhibitors against UL89 herpesvirus terminase[J]. ACS Omega, 2018, 3:8497-8505.
[37] Wang X, Gao P, Menendez-Arias L, et al. Update on recent developments in small molecular HIV-1 RNase H inhibitors (2013-2016):opportunities and challenges[J]. Curr Med Chem, 2018, 25:1682-1702.
[38] Cao L, Song W, De Clercq E, et al. Recent progress in the research of small molecule HIV-1 RNase H inhibitors[J]. Curr Med Chem, 2014, 21:1956-1967.
[39] Yu F, Liu X, Zhan P, et al. Recent advances in the research of HIV-1 RNase H inhibitors[J]. Mini Rev Med Chem, 2008, 8:1243-1251.
[40] Gao P, Cheng X, Sun L, et al. Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase[J]. Bioorg Med Chem, 2019, 27:3836-3845.
[41] Gao P, Wang X, Sun L, et al. Design, synthesis, and biologic evaluation of novel galloyl derivatives as HIV-1 RNase H inhibitors[J]. Chem Biol Drug Des, 2019, 93:582-589.
[42] Sun L, Gao P, Dong G, et al. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase[J]. Eur J Med Chem, 2018, 155:714-724.
[43] Gao P, Zhang L, Sun L, et al. 1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries[J]. Bioorg Med Chem, 2017, 25:5779-5789.
[44] Martin DP, Blachly PG, McCammon JA, et al. Exploring the influence of the protein environment on metal-binding pharmacophores[J]. J Med Chem, 2014, 57:7126-7135.
[45] Cohen SM. A bioinorganic approach to fragment-based drug discovery targeting metalloenzymes[J]. Acc Chem Res, 2017, 50:2007-2016.
[46] Wang L, Edwards TC, Sahani RL, et al. Metal binding 6-arylthio-3-hydroxypyrimidine-2,4-diones inhibited human cytomegalovirus by targeting the pUL89 endonuclease of the terminase complex[J]. Eur J Med Chem, 2021, 222:113640.
[47] Sancineto L, Iraci N, Tabarrini O, et al. NCp7:targeting a multitasking protein for next-generation anti-HIV drug development part 1:covalent inhibitors[J]. Drug Discov Today, 2018, 23:260-271.
[48] Iraci N, Tabarrini O, Santi C, et al. NCp7:targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders[J]. Drug Discov Today, 2018, 23:687-695.
[49] Jia HY, Yu J, Liu XH, et al. Recent progress of inhibitors targeting HIV-1 NCp7[J]. Acta Pharm Sin (药学学报), 2017, 52:1652-1659.
[50] Anzellotti AI, Liu Q, Bloemink MJ, et al. Targeting retroviral Zn finger-DNA interactions:a small-molecule approach using the electrophilic nature of trans-platinum-nucleobase compounds[J]. Chem Biol, 2006, 13:539-548.
[51] Spell SR, Mangrum JB, Peterson EJ, et al. Au(iii) compounds as HIV nucleocapsid protein (NCp7)-nucleic acid antagonists[J]. Chem Commun (Camb), 2016, 53:91-94.
[52] Bernardes VH, Qu Y, Du Z, et al. Interaction of the HIV NCp7 protein with platinum(II) and gold(III) complexes containing tridentate ligands[J]. Inorg Chem, 2016, 55:11396-11407.
[53] Lee YM, Duh Y, Wang ST, et al. Using an old drug to target a new drug site:application of disulfiram to target the Zn-site in HCV NS5A protein[J]. J Am Chem Soc, 2016, 138:3856-3862.
[54] Sargsyan K, Lin CC, Chen T, et al. Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors[J]. Chem Sci, 2020, 11:9904-9909.
[55] Nascimento IJDS, Santos-Júnior PFDS, Aquino TM, et al. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors[J]. Eur J Med Chem, 2021, 224:113698.
[56] Radwan MO, Sonoda S, Ejima T, et al. Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti-viral factor apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G[J]. Bioorg Med Chem, 2016, 24:4398-4405.
[57] De Clercq E. Fifty years in search of selective antiviral drugs[J]. J Med Chem, 2019, 62:7322-7339.
[58] Ross A, Soares DC, Covelli D, et al. Oxovanadium(IV) cyclam and bicyclam complexes:potential CXCR4 receptor antagonists[J]. Inorg Chem, 2010, 49:1122-1132.
[59] Cao X, Li Y, Jin X, et al. Molecular mechanism of divalent-metal-induced activation of NS3 helicase and insights into Zika virus inhibitor design[J]. Nucleic Acids Res, 2016, 44:10505-10514.
[60] Shadrick WR, Ndjomou J, Kolli R, et al. Discovering new medicines targeting helicases:challenges and recent progress[J]. J Biomol Screen, 2013, 18:761-781.
[61] Meagher JL, Takata M, Gonçalves-Carneiro D, et al. Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences[J]. Proc Natl Acad Sci U S A, 2019, 116:24303-24309.
[62] Maio N, Lafont BAP, Sil D, et al. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets[J]. Science, 2021, 373:236-241.
[63] de Paiva REF, Marçal Neto A, Santos IA, et al. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks[J]. Dalton Trans, 2020, 49:16004-16033.
[64] Sun RW, Ma DL, Wong EL, et al. Some uses of transition metal complexes as anti-cancer and anti-HIV agents[J]. Dalton Trans, 2007, (43):4884-4892.
[65] Marzo T, Messori L. A role for metal-based drugs in fighting COVID-19 infection? The case of auranofin[J]. ACS Med Chem Lett, 2020, 11:1067-1068.
[66] Karges J, Cohen SM. Metal complexes as antiviral agents for SARS-CoV-2[J]. Chembiochem, 2021, 22:2600-2607.
[67] Maldonado N, Amo-Ochoa P. The role of coordination compounds in virus research. Different approaches and trends[J]. Dalton Trans, 2021, 50:2310-2323.
[68] Cirri D, Pratesi A, Marzo T, et al. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs[J]. Expert Opin Drug Discov, 2021, 16:39-46.
[69] Lebon F, Boggetto N, Ledecq M, et al. Metal-organic compounds:a new approach for drug discovery. N1-(4-methyl-2-pyridyl)-2,3,6-trimethoxybenzamide copper (II) complex as an inhibitor of human immunodeficiency virus 1 protease[J]. Biochem Pharmacol, 2002, 63:1863-1873.
[70] Bailly B, Gorle AK, Dirr L, et al. Platinum complexes act as shielding agents against virus infection[J]. Chem Commun (Camb), 2021, 57:4666-4669.
[71] Shoup M, Ourahmane A, Ginsburg EP, et al. Substitution-inert polynuclear platinum compounds inhibit human cytomegalovirus attachment and entry[J]. Antiviral Res, 2020, 184:104957.
[72] Rothan HA, Stone S, Natekar J, et al. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells[J]. Virology, 2020, 547:7-11.
[73] Gil-Moles M, Basu U, Büssing R, et al. Gold metallodrugs to target coronavirus proteins:inhibitory effects on the spike-ACE2 interaction and on PLpro protease activity by auranofin and gold organometallics[J]. Chemistry, 2020, 26:15140-15144.
[74] Wong SY, Wai-Yin Sun R, Chung NP, et al. Physiologically stable vanadium(IV) porphyrins as a new class of anti-HIV agents[J]. Chem Commun (Camb), 2005, 28:3544-3546.
[75] Schwartz JA, Lium EK, Silverstein SJ. Herpes simplex virus type 1 entry is inhibited by the cobalt chelate complex CTC-96[J]. J Virol, 2001, 75:4117-4128.
[76] Delehanty JB, Bongard JE, Thach DC, et al. Antiviral properties of cobalt(III)-complexes[J]. Bioorg Med Chem, 2008, 16:830-837.
[77] Chuong C, DuChane CM, Webb EM, et al. Noble metal organometallic complexes display antiviral activity against SARS-CoV-2[J]. Viruses, 2021, 13:980.
[78] Karges J, Kalaj M, Gembicky M, et al. ReI tricarbonyl complexes as coordinate covalent inhibitors for the SARS-CoV-2 main cysteine protease[J]. Angew Chem Int Ed Engl, 2021, 60:10716-10723.
[79] Santos MM, Bastos P, Catela I, et al. Recent advances of metallocenes for medicinal chemistry[J]. Mini Rev Med Chem, 2017, 17:771-784.
[80] Aneja R, Rashad AA, Li H, et al. Peptide triazole inactivators of HIV-1 utilize a conserved two-cavity binding site at the junction of the inner and outer domains of Env gp120[J]. J Med Chem, 2015, 58:3843-3858.
[81] Rashad AA, Kalyana Sundaram RV, Aneja R, et al. Macrocyclic envelope glycoprotein antagonists that irreversibly inactivate HIV-1 before host cell encounter[J]. J Med Chem, 2015, 58:7603-7608.
[82] Gadhachanda VR, Eastman KJ, Wang Q, et al. Ferrocene-based inhibitors of hepatitis C virus replication that target NS5A with low picomolar in vitro antiviral activity[J]. Bioorg Med Chem Lett, 2018, 28:3463-3471.
[83] Li H, Wang R, Sun H. Systems approaches for unveiling the mechanism of action of bismuth drugs:new medicinal applications beyond Helicobacter Pylori infection[J]. Acc Chem Res, 2019, 52:216-227.
[84] Yuan S, Wang R, Chan JF, et al. Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters[J]. Nat Microbiol, 2020, 5:1439-1448.
[85] Ruberte AC, Sanmartin C, Aydillo C, et al. Development and therapeutic potential of selenazo compounds[J]. J Med Chem, 2020, 63:1473-1489.
[86] Sahu PK, Umme T, Yu J, et al. Selenoacyclovir and selenoganciclovir:discovery of a new template for antiviral agents[J]. J Med Chem, 2015, 58:8734-8738.
[87] Mukherjee S, Weiner WS, Schroeder CE, et al. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication[J]. ACS Chem Biol, 2014, 9:2393-2403.
[88] Thenin-Houssier S, de Vera IM, Pedro-Rosa L, et al. Ebselen, a small-molecule capsid inhibitor of HIV-1 replication[J]. Antimicrob Agents Chemother, 2016, 60:2195-2208.
[89] Zhang DW, Yan HL, Xu XS, et al. The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75[J]. J Enzyme Inhib Med Chem, 2020, 35:906-912.
[90] Simanjuntak Y, Liang JJ, Chen SY, et al. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission[J]. PLoS Pathog, 2018, 14:e1006854.
[91] Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors[J]. Nature, 2020, 582:289-293.
[92] Haritha CV, Sharun K, Jose B. A new candidate therapeutic against SARS-CoV-2[J]. Int J Surg, 2020, 84:53-56.
[93] Ma C, Hu Y, Townsend JA, et al. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors[J]. ACS Pharmacol Transl Sci, 2020, 3:1265-1277.
[94] Menéndez CA, Byléhn F, Perez-Lemus GR, et al. Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease[J]. Sci Adv, 2020, 6:eabd0345.
[95] Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections[J]. Free Radic Biol Med, 2020, 156:107-112.
[96] Ramesh R, Reddy DS. Quest for novel chemical entities through incorporation of silicon in drug scaffolds[J]. J Med Chem, 2018, 61:3779-3798.
[97] Nair AG, Zeng Q, Selyutin O, et al. MK-8325:a silyl proline-containing NS5A inhibitor with pan-genotype activity for treatment of HCV[J]. Bioorg Med Chem Lett, 2018, 28:1954-1957.
[98] Hu Y, Wang Y, Li F, et al. Design and expeditious synthesis of organosilanes as potent antivirals targeting multidrug-resistant influenza A viruses[J]. Eur J Med Chem, 2017, 135:70-76.
[99] Song S, Gao P, Sun L, et al. Recent developments in the medicinal chemistry of single boron atom-containing compounds[J]. Acta Pharm Sin B, 2021, 11:3035-3059.
[100] Windsor IW, Palte MJ, Lukesh JC, et al. Sub-picomolar inhibition of HIV-1 protease with a boronic acid[J]. J Am Chem Soc, 2018, 140:14015-14018.
[101] Chong PY, Shotwell JB, Miller J, et al. Design of N-benzoxaborole benzofuran GSK8175-optimization of human pharmacokinetics inspired by metabolites of a failed clinical HCV inhibitor[J]. J Med Chem, 2019, 62:3254-3267.
[102] Zhan P, Li X, Kang DW, et al. Novel strategies in rational design of anti-HIV agents:multitarget and multivalency ligands[J]. Chin J Med Chem (中国药物化学), 2013, 5:406-416.
[103] Song Y, Zhan P, Li X, et al. Multivalent agents:a novel concept and preliminary practice in anti-HIV drug discovery[J]. Curr Med Chem, 2013, 20:815-832.
[104] Chauhan PS, Yadav D, Dubey A, et al. Nano-biomaterials as sensing and therapeutic tool to mitigate viral pathogenesis with special reference to COVID-19[J]. Curr Pharm Des, 2021, 27:3424-3434.
[105] Imani SM, Ladouceur L, Marshall T, et al. Antimicrobial nanomaterials and coatings:current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2[J]. ACS Nano, 2020, 14:12341-12369.
[106] Ciriminna R, Albo Y, Pagliaro M. New antivirals and antibacterials based on silver nanoparticles[J]. ChemMedChem, 2020, 15:1619-1623.
[107] Li Y, Lin Z, Zhao M, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways[J]. ACS Appl Mater Interfaces, 2016, 8:24385-24393.
[108] Du T, Liang J, Dong N, et al. Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding[J]. ACS Appl Mater Interfaces, 2018, 10:4369-4378.
[109] Huang C, Wen T, Shi FJ, et al. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay[J]. ACS Omega, 2020, 5:12550-12556.
[110] Gulati S, Singh P, Diwan A, et al. Functionalized gold nanoparticles:promising and efficient diagnostic and therapeutic tools for HIV/AIDS[J]. RSC Med Chem, 2020, 11:1252-1266.
[111] Rosemary Bastian A, Nangarlia A, Bailey LD, et al. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation[J]. J Biol Chem, 2015, 290:529-543.
[112] Zazo H, Colino CI, Warzecha KT, et al. Gold nanocarriers for macrophage-targeted therapy of human immunodeficiency virus[J]. Macromol Biosci, 2017, 17. DOI:10.1002/mabi.201600359.
[113] Mehranfar A, Izadyar M. Theoretical design of functionalized gold nanoparticles as antiviral agents against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)[J]. J Phys Chem Lett, 2020, 11:10284-10289.
[114] Budhadev D, Poole E, Nehlmeier I, et al. Glycan-gold nanoparticles as multifunctional probes for multivalent lectin-carbohydrate binding:implications for blocking virus infection and nanoparticle assembly[J]. J Am Chem Soc, 2020, 142:18022-18034.
[115] Garrido C, Simpson CA, Dahl NP, et al. Gold nanoparticles to improve HIV drug delivery[J]. Future Med Chem, 2015, 7:1097-1107.
[116] Bowman MC, Ballard TE, Ackerson CJ, et al. Inhibition of HIV fusion with multivalent gold nanoparticles[J]. J Am Chem Soc, 2008, 130:6896-6897.
[117] Sanna V, Youssef MF, Pala N, et al. Inhibition of human immunodeficiency virus-1 integrase by β-diketo acid coated gold nanoparticles[J]. ACS Med Chem Lett, 2020, 11:857-861.
[118] Garaiova Z, Melikishvili S, Michlewska S, et al. Dendronized gold nanoparticles as carriers for gp160(HIV-1) peptides:biophysical insight into complex formation[J]. Langmuir, 2021, 37:1542-1550.
[119] Cagno V, Andreozzi P, D'Alicarnasso M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism[J]. Nat Mater, 2018, 17:195-203.
[120] Zhou YR, Tong T, Jiang XH, et al. GSH-ZnS nanoparticles exhibit high-efficiency and broad-spectrum antiviral activities via multistep inhibition mechanisms[J]. ACS Appl Bio Mater, 2020, 3:4809-4819.
[121] Mallakpour S, Azadi E, Hussain CM. Fight against COVID-19 pandemic with the help of carbon-based nanomaterials[J]. New J Chem, 2021, 45:8832-8846.
[122] Das Jana I, Kumbhalkar P, Banerjee S, et al. Copper nanoparticle-graphene composite-based transparent surface coating with antiviral activity against influenza virus[J]. ACS Appl Nano Mater, 2021, 4:352-362
[123] Wang C, Chen H, Chen D, et al. The Inhibition of H1N1 influenza virus-induced apoptosis by surface decoration of selenium nanoparticles with β-thujaplicin through reactive oxygen species-mediated AKT and p53 signaling pathways[J]. ACS Omega, 2020, 5:30633-30642.
[124] He L, Zhao J, Wang L, et al. Using nano-selenium to combat coronavirus disease 2019(COVID-19)[J]. Nano Today, 2021, 36:101037.
[125] Mallakpour S, Azadi E, Hussain CM. The latest strategists for the fight against COVID-19 pandemic:the role of metals and metal oxides nanoparticles[J]. New J Chem, 2021, 45:6167-6179.
[126] Agostoni V, Chalati T, Horcajada P, et al. Towards an improved anti-HIV activity of NRTI via metal-organic frameworks nanoparticles[J]. Adv Healthc Mater, 2013, 2:1630-1637.
[127] Wang J, Liu Y, Xu K, et al. Broad-spectrum antiviral property of polyoxometalate localized on a cell surface[J]. ACS Appl Mater Interfaces, 2014, 6:9785-9789.
[128] Kozísek M, Cígler P, Lepsík M, et al. Inorganic polyhedral metallacarborane inhibitors of HIV protease:a new approach to overcoming antiviral resistance[J]. J Med Chem, 2008, 51:4839-4843.
[129] Rezácová P, Pokorná J, Brynda J, et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes[J]. J Med Chem, 2009, 52:7132-7141.
[130] Adamson CS, Chibale K, Goss RJM, et al. Antiviral drug discovery:preparing for the next pandemic[J]. Chem Soc Rev, 2021, 50:3647-3655.
[131] De Jesus JR, De Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective:implications for COVID-19[J]. Metallomics, 2020, 12:1912-1930.
相关文献:
1.徐淑静, 丁当, 张续杰, 刘新泳*, 展鹏*.抗病毒药物研究中的新靶标与新策略[J]. 药学学报, 2022,57(4): 903-916
2.李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳.冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020,55(4): 537-553
3.马悦, 魏粉菊, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(1):衣壳蛋白抑制剂[J]. 药学学报, 2020,55(4): 554-565
4.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
5.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
6.李卓, 贾瑞芳, 展鹏, 刘新泳.寨卡病毒抑制剂研究新进展[J]. 药学学报, 2020,55(4): 627-639
7.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
8.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
9.张涛, 周忠霞, 展鹏, 刘新泳.抗痘病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 734-743
10.陶昱岑, 郝霞, 刘新泳, 展鹏.抗肠病毒71型药物化学新进展[J]. 药学学报, 2020,55(4): 744-753
11.姜向毅, 李敬, 魏晓颖, 展鹏, 刘新泳.基孔肯雅病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 754-762
12.梁瑞鹏, 赵彤, 展鹏, 刘新泳.西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 763-772
13.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
14.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
15.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
16.关鑫磊, 姜凤超, 王悦, 吴鹏飞, 王芳, 陈建国.基于药效团模型的乙酰胆碱酯酶、聚腺苷二磷酸核糖聚合酶-1双靶点分子设计研究[J]. 药学学报, 2014,49(6): 819-823
17.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
18.马宇衡,徐波,崔景荣,杨振军,张亮仁,张礼和.三肽四氮唑类20S蛋白酶体抑制剂的设计、合成与活性研究[J]. 药学学报, 2012,47(4): 472-478
19.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
20.高丽梅 张胜华 易 红 蒋建东 宋丹青.苯甲酰脲类抗肿瘤β微管蛋白抑制剂药效团模型的构建与应用[J]. 药学学报, 2010,45(4): 462-466
21.汤湧;张大永;吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J]. 药学学报, 2008,43(7): 669-677
22.祝勇;童心玥;赵玥;陈卉;姜凤超.乙酰胆碱酯酶抑制剂药效团模型的构建[J]. 药学学报, 2008,43(3): 267-276
23.邓小强;向明礼;贾若;杨胜勇.选择性的激酶ATP竞争性抑制剂设计研究进展[J]. 药学学报, 2007,42(12): 1232-1236
24.张文婷;鄢浩;姜凤超.聚腺苷二磷酸核糖聚合酶-1抑制剂药效团模型的建立[J]. 药学学报, 2007,42(3): 279-285
25.徐淑静, 丁当, 张续杰, 刘新泳*, 展鹏*.抗病毒药物研究中的新靶标与新策略[J]. 药学学报,