药学学报, 2022, 57(3): 605-614
余倩, 曹宇, 祝华建, 邵加安, 张建康. 小分子蛋白酶体激动剂的研究进展[J]. 药学学报, 2022, 57(3): 605-614.
YU Qian, CAO Yu, ZHU Hua-jian, SHAO Jia-an, ZHANG Jian-kang. Research progress of small molecule proteasome activators[J]. Acta Pharmaceutica Sinica, 2022, 57(3): 605-614.

余倩1,2, 曹宇1,2, 祝华建1,2, 邵加安1,2, 张建康1,2*
1. 浙大城市学院医学院, 浙江 杭州 310015;
2. 浙江大学药学院, 浙江 杭州 310058
关键词:    蛋白酶体      激动剂      构效关系      内在无序蛋白      神经退行性疾病     
Research progress of small molecule proteasome activators
YU Qian1,2, CAO Yu1,2, ZHU Hua-jian1,2, SHAO Jia-an1,2, ZHANG Jian-kang1,2*
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China;
2. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Proteasome controls the degradation of proteins closely related to life activities and plays a key role in the maintenance of protein homeostasis. Proteasome activities decrease with aging, followed by the overwhelming production of damaged proteins which far exceed the protein consumption. Accumulation of these proteins leads to various diseases including neurodegenerative diseases. Therefore, inducing toxic protein degradation is considered as a promising solution for the treatment of these diseases, while increasing the activity of proteasome is considered as an important strategy. However, the research in this field is still in the preliminary stage, and this review will focus on the discussion of the research progress of various small molecule proteasome activators, including research methods, pharmacological effects, structure-activity relationships and the existing problems.
Key words:    proteasome    activator    structure-activity relationship    intrinsically disordered protein    neurodegenerative disease   
收稿日期: 2021-10-28
DOI: 10.16438/j.0513-4870.2021-1549
基金项目: 国家自然科学基金资助项目(81803432);杭州市科技发展计划(20201203B150)。
通讯作者: 张建康,Tel:86-571-88016565,E-mail:zhang_jk@zucc.edu.cn
Email: zhang_jk@zucc.edu.cn
PDF(5190KB) Free
余倩  在本刊中的所有文章
曹宇  在本刊中的所有文章
祝华建  在本刊中的所有文章
邵加安  在本刊中的所有文章
张建康  在本刊中的所有文章

[1] Hetz C, Glimcher LH. Protein homeostasis networks in physiology and disease[J]. Curr Opin Cell Biol, 2011, 23:123-125.
[2] Kaushik S, Cuervo AM. Proteostasis and aging[J]. Nat Med, 2015, 21:1406-1415.
[3] Shen M, Chan TH, Dou QP. Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization[J]. Anti-cancer Agent Med Chem, 2012, 12:891-901.
[4] Romaniuk W, Oldziej AE, Zinczuk J, et al. Proteasome inhibitors in cancer therapy[J]. Postepy Hig Med Dosw (Online), 2015, 69:1443-1450.
[5] Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors:an expanding army attacking a unique target[J]. Chem Biol, 2012, 19:99-115.
[6] Jones CL, Tepe JJ. Proteasome activation to combat proteotoxicity[J]. Molecules, 2019, 24:2841.
[7] Chondrogianni N, Voutetakis K, Kapetanou M, et al. Proteasome activation:an innovative promising approach for delaying aging and retarding age-related diseases[J]. Ageing Res Rev, 2015, 23:37-55.
[8] Xie Y. Structure, assembly and homeostatic regulation of the 26S proteasome[J]. J Mol Cell Biol, 2010, 2:308-317.
[9] Bard JAM, Goodall EA, Greene ER, et al. Structure and function of the 26S proteasome[J]. Annu Rev Biochem, 2018, 87:697-724.
[10] Groll M, Heinemeyer W, Jager S, et al. The catalytic sites of 20S proteasomes and their role in subunit maturation:a mutational and crystallographic study[J]. Proc Natl Acad Sci U S A, 1999, 96:10976-10983.
[11] He J, Kulkarni K, Da Fonseca PC, et al. The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric alpha-helical rings[J]. Structure, 2012, 20:513-521.
[12] Schweitzer A, Aufderheide A, Rudack T, et al. Structure of the human 26S proteasome at a resolution of 3.9 A[J]. Proc Natl Acad Sci U S A, 2016, 113:7816-7821.
[13] Smith DM, Chang SC, Park S, et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry[J]. Mol Cell, 2007, 27:731-744.
[14] Hill CP, Masters EI, Whitby FG. The 11S regulators of 20S proteasome activity[J]. Curr Top Microbiol, 2002, 268:73-89.
[15] Kumar Deshmukh F, Yaffe D, Olshina MA, et al. The contribution of the 20S proteasome to proteostasis[J]. Biomolecules, 2019, 9:190.
[16] Finley D, Chen X, Walters KJ. Gates, channels, and switches:elements of the proteasome machine[J]. Trends Biochem Sci, 2016, 41:77-93.
[17] Grune T, Catalgol B, Licht A, et al. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress[J]. Free Radical Bio Med, 2011, 51:1355-1364.
[18] Wang X, Yen J, Kaiser P, et al. Regulation of the 26S proteasome complex during oxidative stress[J]. Sci Signal, 2010, 3:rs8.
[19] Orlowski M, Wilk S. Ubiquitin-independent proteolytic functions of the proteasome[J]. Arch Biochem Biophys, 2003, 415:1-5.
[20] Pickart CM. Mechanisms underlying ubiquitination[J]. Annu Rev Biochem, 2001, 70:503-533.
[21] Schapira M, Calabrese MF, Bullock AN, et al. Targeted protein degradation:expanding the toolbox[J]. Nat Rev Drug Discov, 2019, 18:949-963.
[22] Lee MJ, Lee BH, Hanna J, et al. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes[J]. Mol Cell Proteomics, 2011, 10:R110003871.
[23] Hu M, Li P, Song L, et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14[J]. EMBO J, 2005, 24:3747-3756.
[24] Sahu I, Mali SM, Sulkshane P, et al. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag[J]. Nat Commun, 2021, 12:6173
[25] Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway[J]. Biomolecules, 2014, 4:862-884.
[26] Erales J, Coffino P. Ubiquitin-independent proteasomal degradation[J]. Biochim Biophys Acta, 2014, 1843:216-221.
[27] Asher G, Tsvetkov P, Kahana C, et al. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73[J]. Genes Dev, 2005, 19:316-321.
[28] Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology[J]. Pharmacol Rev, 2019, 71:170-197.
[29] Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein[J]. J Mol Graph Model, 2001, 19:26-59.
[30] Deforte S, Uversky VN. Order, disorder, and everything in between[J]. Molecules, 2016, 21:1090.
[31] Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease[J]. Nat Med, 2004, 10 Suppl:S10-S17.
[32] Mcnaught KS, Olanow CW, Halliwell B, et al. Failure of the ubiquitin-proteasome system in Parkinson's disease[J]. Nat Rev Neurosci, 2001, 2:589-594.
[33] Lam YA, Pickart CM, Alban A, et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2000, 97:9902-9906.
[34] Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases:introducing the D2 concept[J]. Annu Rev Biophys, 2008, 37:215-246.
[35] Ding Q, Dimayuga E, Keller JN. Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS[J]. Antioxid Redox Sign, 2006, 8:163-172.
[36] Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease[J]. J Cell Biol, 2018, 217:51-63.
[37] Hyun S, Shin D. Chemical-mediated targeted protein degradation in neurodegenerative diseases[J]. Life-Basel, 2021, 11:607.
[38] Kumar D, Sharma N, Giri R. Therapeutic interventions of cancers using intrinsically disordered proteins as drug targets:c-Myc as model system[J]. Cancer Inform, 2017, 16:1176935117699408.
[39] Du Z, Uversky VN. A comprehensive survey of the roles of highly disordered proteins in type 2 diabetes[J]. Int J Mol Sci, 2017, 18:2010.
[40] Njomen E, Tepe JJ. Proteasome activation as a new therapeutic approach to target proteotoxic disorders[J]. J Med Chem, 2019, 62:6469-6481.
[41] Li Y, Liang JY, Liu XL, et al. Research progress on 26S proteasome inhibitors[J]. Acta Pharm Sin (药学学报), 2017, 52:524-530.
[42] Latham MP, Sekhar A, Kay LE. Understanding the mechanism of proteasome 20S core particle gating[J]. Proc Natl Acad Sci U S A, 2014, 111:5532-5537.
[43] Shibatani T, Ward WF. Sodium dodecyl sulfate (SDS) activation of the 20S proteasome in rat liver[J]. Arch Biochem Biophys, 1995, 321:160-166.
[44] Ruiz De Mena I, Mahillo E, Arribas J, et al. Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase[J]. Biochem J, 1993, 296:93-97.
[45] Katsiki M, Chondrogianni N, Chinou I, et al. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts[J]. Rejuv Res, 2007, 10:157-172.
[46] Jones CL, Njomen E, Sjogren B, et al. Small molecule enhancement of 20S proteasome activity targets intrinsically disordered proteins[J]. ACS Chem Biol, 2017, 12:2240-2247.
[47] Medina DX, Caccamo A, Oddo S. Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity[J]. Brain Pathol, 2011, 21:140-149.
[48] Fiolek TJ, Keel KL, Tepe JJ. Fluspirilene analogs activate the 20S proteasome and overcome proteasome impairment by intrinsically disordered protein oligomers[J]. ACS Chem Neurosci, 2021, 12:1438-1448.
[49] Trippier PC, Zhao KT, Fox SG, et al. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis[J]. ACS Chem Neurosci, 2014, 5:823-829.
[50] Santoro AM, Lanza V, Bellia F, et al. Pyrazolones activate the proteasome by gating mechanisms and protect neuronal cells from beta-amyloid toxicity[J]. ChemMedChem, 2020, 15:302-316.
[51] Njomen E, Osmulski PA, Jones CL, et al. Small molecule modulation of proteasome assembly[J]. Biochemistry, 2018, 57:4214-4224.
[52] Fiolek TJ, Magyar CL, Wall TJ, et al. Dihydroquinazolines enhance 20S proteasome activity and induce degradation of alpha-synuclein, an intrinsically disordered protein associated with neurodegeneration[J]. Bioorg Med Chem Lett, 2021, 36:127821.
[53] Maresh ME, Chen P, Hazbun TR, et al. A yeast chronological lifespan assay to assess activity of proteasome stimulators[J]. Chembiochem, 2021, 22:2553-2560.
[54] Huang L, Ho P, Chen CH. Activation and inhibition of the proteasome by betulinic acid and its derivatives[J]. FEBS Lett, 2007, 581:4955-4959.
[55] Coleman RA, Trader DJ. Development and application of a sensitive peptide reporter to discover 20S proteasome stimulators[J]. ACS Comb Sci, 2018, 20:269-276.
[56] Trader DJ, Simanski S, Dickson P, et al. Establishment of a suite of assays that support the discovery of proteasome stimulators[J]. BBA-Gen Subjects, 2017, 1861:892-899.
[57] Coleman RA, Muli CS, Zhao Y, et al. Analysis of chain length, substitution patterns, and unsaturation of AM-404 derivatives as 20S proteasome stimulators[J]. Bioorg Med Chem Lett, 2019, 29:420-423.
[58] Lam YA, Xu W, Demartino GN, et al. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome[J]. Nature, 1997, 385:737-740.
[59] Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14[J]. Nature, 2010, 467:179-184.
[60] Tian Z, Darcy P, Wang X, et al. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance[J]. Blood, 2014, 123:706-716.
[61] Wang K, Zhang Y, Wang J, et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy[J]. Sci Rep, 2016, 6:27421.
[62] Lee SH, Park Y, Yoon SK, et al. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation[J]. J Biol Chem, 2010, 285:41280-41289.
[63] Um JW, Im E, Park J, et al. ASK1 negatively regulates the 26S proteasome[J]. J Biol Chem, 2010, 285:36434-36446.
[64] Lokireddy S, Kukushkin NV, Goldberg AL. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins[J]. Proc Natl Acad Sci U S A, 2015, 112:E7176-7185.
[65] Djakovic SN, Schwarz LA, Barylko B, et al. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II[J]. J Biol Chem, 2009, 284:26655-26665.
[66] Guo X, Wang X, Wang Z, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis[J]. Nat Cell Biol, 2016, 18:202-212.
[67] Leestemaker Y, de Jong A, Witting KF, et al. Proteasome activation by small molecules[J]. Cell Chem Biol, 2017, 24:725-736.e7.
[68] Zhang F, Hu Y, Huang P, et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6[J]. J Biol Chem, 2007, 282:22460-22471.
[69] Park SJ, Ahmad F, Philp A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases[J]. Cell, 2012, 148:421-433.
[70] Myeku N, Clelland CL, Emrani S, et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling[J]. Nat Med, 2016, 22:46-53.
[71] Verplank JJS, Lokireddy S, Zhao J, et al. 26S proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation[J]. Proc Natl Acad Sci U S A, 2019, 116:4228-4237.
[72] Kwak MK, Itoh K, Yamamoto M, et al. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1,2-dimethiole-3-thione[J]. Mol Med, 2001, 7:135-145.
[73] Kwak MK, Wakabayashi N, Greenlaw JL, et al. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway[J]. Mol Cell Biol, 2003, 23:8786-8794.
[74] Cui Y, Ma S, Zhang C, et al. Pharmacological activation of the Nrf2 pathway by 3H-1,2-dithiole-3-thione is neuroprotective in a mouse model of Alzheimer disease[J]. Behav Brain Res, 2018, 336:219-226.
[75] Kisselev AF, Goldberg AL. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates[J]. Method Enzymol, 2005, 398:364-378.
[76] Lazaro DF, Bellucci A, Brundin P, et al. Editorial:protein misfolding and spreading pathology in neurodegenerative diseases[J]. Front Mol Neurosci, 2019, 12:312.
[77] Sherman DJ, Li J. Proteasome inhibitors:harnessing proteostasis to combat disease[J]. Molecules, 2020, 25:671.
1.常佳佳, 侯石, 闫心林, 肖军海.干扰素基因刺激因子(STING)及其激动剂的研究进展[J]. 药学学报, 2021,56(7): 1880-1892
2.张艳春, 张祖志, 徐进宜, 王丹慧, 徐梅月.作用于AT2受体化合物的研究进展[J]. 药学学报, 2021,56(3): 711-722
3.葛新月, 莫永梅, 潘莉, 程卯生.长效β2受体激动剂的研究进展[J]. 药学学报, 2016,51(12): 1838-1844
4.李青, 杨洮乙, 薛雨, 马小卓, 唐静姝, 张桂森, 王克威, 张亮仁.中氮茚类α7烟碱型乙酰胆碱受体激动剂的构效关系研究[J]. 药学学报, 2016,51(10): 1584-1594
5.曲丽丽, 马宇衡.PPARγ激动剂二氢茚酮类衍生物的设计、合成与活性研究[J]. 药学学报, 2013,48(4): 508-513
6.田育林, 金 晶, 汪小涧.选择性鞘胺醇-1-磷酸受体1激动剂研究进展[J]. 药学学报, 2012,47(1): 7-17
7.俞纲 柳用绍 颜玲娣 温泉 宫泽辉.新型阿片受体部分激动剂-噻吩诺啡及其衍生物的构效关系研究[J]. 药学学报, 2009,44(7): 726-730
8.陈建鸿;白东鲁.作用于烟碱型胆碱受体激动剂的研究进展[J]. 药学学报, 2002,37(4): 309-315