|
|
药学学报, 2022, 57(3): 716-723 |
|
|
引用本文: |
|
|
杨吾燕, 闫姣姣, 高丽, 秦雪梅. 基于生物信息分析研究黄芩素通过NOX2/STAT1/NF-κB通路抑制LPS诱导的BV-2细胞神经炎症的作用机制[J]. 药学学报, 2022, 57(3): 716-723. |
|
|
YANG Wu-yan, YAN Jiao-jiao, GAO Li, QIN Xue-mei. Baicalein inhibits neuroinflammation via NOX2/STAT1/NF-κB pathway in LPS-induced BV-2 cells based on bioinformatics methods[J]. Acta Pharmaceutica Sinica, 2022, 57(3): 716-723. |
|
|
|
|
|
|
|
基于生物信息分析研究黄芩素通过NOX2/STAT1/NF-κB通路抑制LPS诱导的BV-2细胞神经炎症的作用机制 |
|
杨吾燕1,2,3, 闫姣姣1,2,3, 高丽1,2,3*, 秦雪梅1,2,3* |
|
1. 山西大学中医药现代研究中心, 山西 太原 030006; 2. 山西大学化学生物学与分子工程教育部重点实验室, 山西 太原 030006; 3. 地产中药功效物质研究与利用山西省重点实验室, 山西 太原 030006 |
摘要: |
本研究旨在确定黄芩素对脂多糖(lipopolysaccharide,LPS)诱导的BV-2细胞神经炎症的分子机制。采用生物信息分析、分子对接方法预测黄芩素的潜在靶点和作用机制,并使用免疫荧光染色和Western blot技术对关键靶点一氧化氮合酶(inducible nitric oxide synthase,iNOS)和环氧合酶-2 (cyclooxygenase-2,COX-2)、信号转导子和转录激活子1/核因子κB (signal transducer and activator of transcription 1/nuclear factor kappa-B,STAT1/NF-κB)信号通路相关蛋白及其上游调控因子NADPH氧化酶2 (NADPH oxidase-2,NOX2)进行验证,研究黄芩素改善神经炎症的作用机制。结果表明,生物信息分析和分子对接技术预测出iNOS和COX-2为关键靶点,NF-κB信号通路为关键通路。实验验证表明,在LPS诱导的BV-2细胞中,黄芩素能显著降低iNOS和COX-2的表达水平,有效抑制NF-κB和STAT1的磷酸化及NOX2的生成。综上,黄芩素可通过NOX2 (gp91phox/p47phox)/STAT1/NF-κB途径显著抑制LPS诱导的BV-2细胞炎症。 |
关键词:
黄芩素
神经炎症
网络药理学
分子对接
作用机制
|
|
Baicalein inhibits neuroinflammation via NOX2/STAT1/NF-κB pathway in LPS-induced BV-2 cells based on bioinformatics methods |
|
YANG Wu-yan1,2,3, YAN Jiao-jiao1,2,3, GAO Li1,2,3*, QIN Xue-mei1,2,3* |
|
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; 2. The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; 3. The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China |
Abstract: |
This study identified the exact molecular mechanisms of baicalein on neuroinflammation in lipopolysaccharide (LPS)-induced BV-2 cells. Bioinformatics methods and molecular docking were integrated for predicting the potential targets and mechanisms of baicalein. Immunofluorescence staining and Western blot were used to analyze the predicted key targets [inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)], the expression level of protein related to signal transducer and activator of transcription 1/nuclear factor kappa-B (STAT1/NF-κB) signaling pathway and its upstream regulator NADPH oxidase-2 (NOX2), and then the mechanism of baicalein in alleviating neuroinflammation was explored. The results showed that iNOS and COX-2 were predicted as the key targets and NF-κB signaling pathway was one of the important pathways by bioinformatics methods and molecular docking. Experimental verification showed that baicalein could significantly reduce the expression of iNOS and COX-2, inhibit the phosphorylation of NF-κB and STAT1 and the production of NOX2 in LPS-induced BV-2 cells. To sum up, baicalein could effectively inhibit the inflammatory reaction in LPS-induced BV-2 cells through regulating NOX2 (gp91phox/p47phox)/STAT1/NF-κB pathway. |
Key words:
baicalein
neuroinflammation
network pharmacology
molecular docking
mechanism
|
|
收稿日期: 2021-09-13
|
DOI: 10.16438/j.0513-4870.2021-1339 |
基金项目: 国家自然科学基金资助项目(81603319);山西省面上青年基金资助项目(201801D221374)。 |
通讯作者: 高丽,Tel:86-351-7018379,E-mail:gaoli87@sxu.edu.cn;秦雪梅,Tel:86-351-7011501,E-mail:qinxm@sxu.edu.cn
Email: gaoli87@sxu.edu.cn;qinxm@sxu.edu.cn |
|
|
|
|
|
|
|
参考文献: |
|
|
[1] You MM, Chen YF, Pan YM, et al. Royal Jelly attenuates LPS-induced inflammation in BV-2 microglial cells through modulating NF-κB and p38/JNK signaling pathways[J]. Mediators Inflamm, 2018, 2018:7834381. [2] Ransohoff RM. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353:777-783. [3] Chen J, Yin W, Tu Y, et al. L-F001, a novel multifunctional ROCK inhibitor, suppresses neuroinflammation in vitro and in vivo:involvement of NF-κB inhibition and Nrf2 pathway activation[J]. Eur J Pharmacol, 2017, 806:1-9. [4] Loane DJ, Kumar A. Microglia in the TBI brain:the good, the bad, and the dysregulated[J]. Exp Neurol, 2016, 275 Pt 3:316-327. [5] Yao C, Liu X, Zhou Z, et al. Melatonin attenuates expression of cyclooxygenase-2(COX-2) in activated microglia induced by lipopolysaccharide (LPS)[J]. J Toxicol Environ Health A, 2019, 82:437-446. [6] Dinda B, Dinda S, DasSharma S, et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders[J]. Eur J Med Chem, 2017, 131:68-80. [7] Duan DD, Wang KX, Zhou YZ, et al. Baicalein exerts beneficial effects in D-galactose-induced aging rats through attenuation of inflammation and metabolic dysfunction[J]. Rejuvenation Res, 2017, 20:506-516. [8] Gao L, Li J, Zhou Y, et al. Effects of baicalein on cortical proinflammatory cytokines and the intestinal microbiome in senescence accelerated mouse prone 8[J]. ACS Chem Neurosci, 2018, 9:1714-1724. [9] Yan JJ, Gao L, Qin XM et al. Baicalein attenuates the neuro-inflammation in LPS-activated BV-2 microglial cells through suppression of pro-inflammatory cytokines, COX2/NF-κB expressions and regulation of metabolic abnormality[J]. Int Immunopharmacol, 2020, 79:1060902. [10] Song H, Lu Y, Qu Z, et al. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells[J]. Sci Rep, 2016, 6:35323. [11] Juknat A, Pietr M, Kozela E, et al. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 micro-glial cells[J]. PLoS One, 2013, 8:e61462. [12] Zhou H, Qu Z, Mossine VV, et al. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells[J]. PLoS One, 2014, 9:e113531. [13] Lee SB, Lee WS, Shin JS, et al. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6via AP-1, NF-κB, and JAK-STAT inactivation in RAW264.7 macrophages[J]. Int Immunopharmacol, 2017, 49:21-29. [14] Yauger YJ, Bermudez S, Moritz KE, et al. Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro[J]. J Neuroinflammation, 2019, 16:41. [15] Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes[J]. Immunobiology, 2019, 224:242-253. [16] Qi Z, Yin F, Lu L, et al. Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production[J]. Inflamm Res, 2013, 62:845-855. [17] Zheng C, Qu YX, Wang B, et al. COX-2/PGE2 facilitates fracture healing by activating the Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23:9721-9728. [18] Tse JKY. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders[J]. ACS Chem Neurosci, 2017, 8:1438-1447. [19] Zoete V, Schuepbach T, Bovigny C, et al. Attracting cavities for docking. Replacing the rough energy landscape of the protein by a smooth attracting landscape[J]. J Comput Chem, 2016, 37:437-447. [20] Sayers EW, Beck J, Bolton EE, et al. Database resources of the national center for biotechnology information[J]. Nucleic Acids Res, 2021, 49:D10-D17. [21] David G, Grosdidier A, Wirth M, et al. SwissTargetPrediction:a web server for target prediction of bioactive small molecules[J]. Nucleic Acids Res, 2014, 42:32-38. [22] Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry[J]. Nat Biotechnol, 2007, 25:197-206. [23] Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10:protein-protein interaction networks, integrated over the tree of life[J]. Nucleic Acids Res, 2015, 43:D447-D452. [24] Lopes CT, Franz M, Kazi F, et al. Cytoscape web:an interactive web-based network browser[J]. Bioinformatics, 2010, 26:2347-2348. [25] Assenov Y, Ramírez F, Schelhorn SE, et al. Computing topological parameters of biological networks[J]. Bioinformatics, 2008, 24:282-284. [26] Bader GD, Hogue CW. An automated method for finding mole-cular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4:2. [27] Sterling T, Irwin JJ. ZINC 15——ligand discovery for everyone[J]. J Chem Inf Model, 2015, 55:2324-2337. [28] Berman HM, Westbrook J, Feng Z, et al. The protein data bank[J]. Nucleic Acids Res, 2000, 28:235-242. [29] Trott O, Olson AJ. AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31:455-461. [30] Nathan A, Nils W, Jens M. bcl::Cluster:a method for clustering biological molecules coupled with visualization in the Pymol molecular graphics system[J]. IEEE Int Conf Comput Adv Bio Med Sci, 2011, 2011:13-18. [31] Sherman BT, Hosack DA, Yang J, et al. DAVID:database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4:P3. [32] Irwin JJ, Shoichet BK, Mysinger MM, et al. Automated docking screens:a feasibility study[J]. J Med Chem, 2009, 52:5712-5720. [33] Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking[J]. Curr Protoc Bioinformatics, 2008, Chapter 8:Unit 8.14. [34] Li S, Fan TP, Zhang WD, et al. Network pharmacology in traditional Chinese medicine[J]. Evid Based Complement Alternat Med, 2014, 2014:138460. [35] Farkhondeh T, Pourbagher-Shahri AM, Ashrafizadeh M, et al. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders[J]. Neural Regen Res, 2020, 15:1792-1798. [36] Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polari-zation and metabolic states[J]. Br J Pharmacol, 2016, 173:649-665. [37] Zhang J, Zheng Y, Luo Y, et al. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells[J]. Mol Immunol, 2019, 116:29-37. [38] Chhor V, Le Charpentier T, Lebon S, et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro[J]. Brain Behav Immun, 2013, 32:70-85. [39] Nogawa S, Forster C, Zhang F, et al. Interaction between indu-cible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia[J]. Proc Natl Acad Sci U S A, 1998, 95:10966-10971. [40] Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria[J]. Mol Neurobiol, 2003, 27:325-355. [41] Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors:downstream effectors of COX-2 neurotoxicity[J]. Nat Med, 2006, 12:225-229. [42] Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders[J]. J Clin Invest, 2001, 107:247-254. [43] Kim YJ, Hwang SY, Oh ES, et al. IL-1β, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-κB pathways[J]. J Neurosci Res, 2006, 84:1037-1046. [44] Baeuerle PA, Baltimore D. NF-kappa B:ten years after[J]. Cell, 1996, 87:13-20. [45] Ohmori Y, Schreiber RD, Hamilton TA. Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappa B[J]. J Biol Chem, 1997, 272:14899-14907. [46] Yang XJ, Seto E. HATs and HDACs:from structure, function and regulation to novel strategies for therapy and prevention[J]. Oncogene, 2007, 26:5310-5318. [47] Lo JY, Kamarudin MN, Hamdi OA, et al. Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[J]. Food Funct, 2015, 6:3550-3559. [48] Zhong LM, Zong Y, Sun L, et al. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells[J]. PLoS One, 2012, 7:e32195. [49] Luu K, Greenhill CJ, Majoros A, et al. STAT1 plays a role in TLR signal transduction and inflammatory responses[J]. Immunol Cell Biol, 2014, 92:761-769. [50] Lee HH, Shin JS, Lee WS, et al. Biflorin, isolated from the flower buds of Syzygium aromaticum L., suppresses LPS-induced inflam-matory mediators via STAT1 inactivation in macrophages and protects mice from endotoxin shock[J]. J Nat Prod, 2016, 79:711-720. [51] Li JQ, Zhou YZ, Gao L, et al. Integration of transcriptomics and network analysis deciphers the mechanisms of baicalein in improving learning and memory impairment in senescence-accelerated mouse prone 8(SAMP8)[J]. Eur J Pharmacol, 2019, 865:172789. [52] Yang CS, Kim JJ, Lee SJ, et al. TLR3-triggered reactive oxygen species contribute to inflammatory responses by activating signal transducer and activator of transcription-1[J]. J Immunol, 2013, 190:6368-6377. [53] Sareila O, Kelkka T, Pizzolla A, et al. NOX2 complex-derived ROS as immune regulators[J]. Antioxid Redox Signal, 2011, 15:2197-2208. [54] El-Benna J, Dang PM, Gougerot-Pocidalo MA. Priming of the neutrophil NADPH oxidase activation:role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane[J]. Semin Immunopathol, 2008, 30:279-289. |
|
|
|
相关文献: |
|
|
1.叶晨, 江雯, 胡熳, 张艳, 刘钰偲, 梁继超*, 陈勇*.水飞蓟黄酮提取物治疗非酒精性脂肪肝病的网络药理学研究[J]. 药学学报, 2022,57(2): 399-408 |
|
|
2.韩彦琪, 陈志霖, 刘耀晨, 胡江宁, 许浚, 张洪兵, 刘建庭, 张杨, 张铁军, 刘昌孝.基于网络药理学的复方鱼腥草合剂清热解毒药效物质基础及作用机制研究[J]. 药学学报, 2021,56(6): 1653-1662 |
|
|
3.王京龙, 杨斌, 郑丹丹, 张立华, 付先军, 张永清, 孙秀梅, 赵忠熙.基于网络药理学二黄汤治疗急性肺损伤的作用机制研究[J]. 药学学报, 2021,56(1): 244-256 |
|
|
4.赵丽珠, 杨波, 孙向明, 张天雷, 于大海, 李文兰, 阎新佳.黄芪汤化学成分分析及其治疗非酒精性脂肪肝病的机制[J]. 药学学报, 2021,56(11): 3082-3090 |
|
|
5.黄友, 杨莎莎, 林夏, 赵生嘉, 魏馨怡, 傅超美, 张臻.基于网络药理-分子对接研究附子理中丸治疗溃疡性结肠炎的作用机制[J]. 药学学报, 2020,55(8): 1812-1822 |
|
|
6.钟仁兴, 丁子禾, 杨燕妮, 夏天乙, 王武静, 王毅, 王艳慧, 舒尊鹏.基于网络药理学分析的橘红痰咳液主治“痰、咳、喘”的药效物质基础与作用机制研究[J]. 药学学报, 2020,55(9): 2134-2144 |
|
|
7.宋红新, 马旭冉, 王敦方, 王彦礼, 邹迪新, 苗金雪, 王汉, 杨伟鹏.基于网络药理学的黄芩汤治疗溃疡性结肠炎的潜在机制研究[J]. 药学学报, 2020,55(2): 247-255 |
|
|
8.郑一夫, 孔令雷, 贾皓, 张宝月, 王喆, 许律捷, 刘艾林, 杜冠华.基于系统的化合物-靶点相互作用预测模型的消栓通络方抗脑卒中网络药理学研究[J]. 药学学报, 2020,55(2): 256-264 |
|
|
9.吴昊, 王佳琪, 杨雨薇, 李天怡, 曹一佳, 曲玉霞, 靳玉洁, 张晨宁, 孙毅坤.基于网络药理学和分子对接技术初步探索“清肺排毒汤”抗新型冠状病毒肺炎作用机制[J]. 药学学报, 2020,55(3): 374-383 |
|
|
10.高凤凤, 裴艳玲, 任越, 陈紫军, 卢建秋, 张燕玲.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J]. 药学学报, 2020,55(11): 2642-2650 |
|
|
11.田瑞, 李宇飞, 李莹倩, 郑继雯, 李华山.基于网络药理学探讨李氏溃结方治疗溃疡性结肠炎的分子机制[J]. 药学学报, 2020,55(11): 2657-2664 |
|
|
12.董雅倩, 张佳幸, 龚琳娜, 石碧锐, 周凤华, 肖炜, 刘孟华.白花蛇舌草环烯醚萜的鉴定及基于网络药理学的抗肾纤维化作用的机制研究[J]. 药学学报, 2020,55(12): 2934-2941 |
|
|
13.马林, 邵明燕, 孙乾斌, 李春, 王勇.基于网络药理学的丹七片治疗冠心病作用机制研究[J]. 药学学报, 2020,55(12): 2942-2950 |
|
|
14.袁文彬, 韦艳美, 陈勇, 梁继超.基于网络药理学对刺五加总苷治疗2型糖尿病作用机制研究[J]. 药学学报, 2019,54(11): 1982-1989 |
|
|
15.毛霞, 陈文佳, 李鹰飞, 李玮婕, 李泰贤, 王晓月, 郭敏群, 张彦琼, 林娜.基于网络药理学研究策略探究芍药苷对佐剂诱导型关节炎大鼠模型的治疗作用及其分子机制[J]. 药学学报, 2019,54(11): 2000-2010 |
|
|
16.史海龙, 冯雪松, 马晓军, 胥冰, 晁旭.基于网络药理学的固肠止泻丸治疗肠易激综合征作用机制研究[J]. 药学学报, 2019,54(3): 482-493 |
|
|
17.庄莉, 翟园园, 姚卫峰, 徐佳, 冯丽, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸对肾脏保护作用的机制研究[J]. 药学学报, 2019,54(5): 877-885 |
|
|
18.郭秋岩, 李玮婕, 王超, 曹人郦, 李泰贤, 毛霞, 王晓月, 郭敏群, 张彦琼, 林娜.乌头汤缓解神经病理性疼痛的炎症网络调控机制研究[J]. 药学学报, 2019,54(6): 1054-1061 |
|
|
19.李冰涛, 翟兴英, 李佳, 涂珺, 张启云, 徐国良, 黄丽萍, 邵峰, 朱卫丰, 刘荣华.基于网络药理学葛根解热作用机制研究[J]. 药学学报, 2019,54(8): 1409-1416 |
|
|
20.张莹, 韦佳慧, 张成玲, 李攀红, 孙文威, 徐晓玉, 陈怡.基于网络药理学的加味佛手散抑制子宫内膜侵袭转移机制研究[J]. 药学学报, 2018,53(9): 1398-1405 |
|
|
21.张王宁, 高耀, 李科, 钞建宾, 秦雪梅, 李爱平.基于网络药理学的黄芪总黄酮治疗肾病综合征的机制研究[J]. 药学学报, 2018,53(9): 1429-1441 |
|
|
22.时悦, 姚璎珈, 蔺莹, 梁喜才, 倪颖男, 吴雨桐, 杨静娴.基于网络药理学的开心散治疗阿尔茨海默病的作用机制分析[J]. 药学学报, 2018,53(9): 1458-1466 |
|
|
23.颜磊, 何小燕, 高耀, 向欢, 徐向平, 黄胜, 颜冬兰, 秦雪梅, 田俊生.基于网络药理学的驴胶补血颗粒升高白细胞作用机制研究[J]. 药学学报, 2018,53(10): 1660-1669 |
|
|
24.李建良, 梁慧, 蔡淑珍, 李志勇, 图雅.基于网络药理学探讨蒙药诃子解草乌心脏毒的机制研究[J]. 药学学报, 2018,53(10): 1670-1679 |
|
|
25.吴丹, 高耀, 向欢, 邢婕, 韩雨梅, 秦雪梅, 田俊生.基于网络药理学的柴胡抗抑郁作用机制研究[J]. 药学学报, 2018,53(2): 210-219 |
|
|
26.李磊, 图门巴雅尔, 李培锋, 刘畅, 李升和, 宁康健, 姜锦鹏.牛磺鹅去氧胆酸抗炎作用机制的网络药理学研究[J]. 药学学报, 2018,53(12): 2064-2075 |
|
|
27.翟园园, 刘其南, 徐佳, 姚卫峰, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸保肝作用机制研究[J]. 药学学报, 2018,53(4): 567-573 |
|
|
28.王珂欣, 高丽, 周玉枝, 张建琴, 秦雪梅, 杜冠华.基于网络药理学的苦参碱抗肝癌作用及机制研究[J]. 药学学报, 2017,52(6): 888-896 |
|
|
29.赵蕾, 武嫣斐, 高耀, 向欢, 秦雪梅, 田俊生.基于网络药理学的百合地黄汤干预心理亚健康作用机制研究[J]. 药学学报, 2017,52(1): 99-105 |
|
|
30.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275 |
|
|
31.陶瑾, 姜民, 陈露莹, 侯媛媛, 张德芹, 邱峰, 白钢.基于中药性味理论和网络药理学方法的治疗消渴方药作用机制研究[J]. 药学学报, 2017,52(2): 236-244 |
|
|
32.牟海栋, 屠鹏飞, 姜勇.基于网络药理学的肉桂温经通脉的作用机制研究[J]. 药学学报, 2016,51(11): 1724-1733 |
|
|
33.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387 |
|
|
34.白雨, 范雪梅, 孙瀚, 王义明, 梁琼麟, 罗国安.基于网络药理学的罗格列酮复方作用机制探讨[J]. 药学学报, 2015,50(3): 284-290 |
|
|
35.程彬峰, 侯媛媛, 姜 民, 赵振营, 董林毅, 白 钢.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J]. 药学学报, 2013,48(5): 686-693 |
|
|
|
|
|
|
|
|
|
|