药学学报, 2022, 57(4): 976-989
引用本文:
黄龙, 曾文, 徐冰, 张灿阳, 马少华, 张翀, 王怡, 邢新会. 口服多糖靶向药物递送体系在结肠疾病治疗中的应用研究进展[J]. 药学学报, 2022, 57(4): 976-989.
HUANG Long, ZENG Wen, XU Bing, ZHANG Can-yang, MA Shao-hua, ZHANG Chong, WANG Yi, XING Xin-hui. Research progress of polysaccharides-based targeted oral drug delivery systems for colonic diseases treatment[J]. Acta Pharmaceutica Sinica, 2022, 57(4): 976-989.

口服多糖靶向药物递送体系在结肠疾病治疗中的应用研究进展
黄龙1,2, 曾文2,3, 徐冰1,4, 张灿阳1, 马少华1, 张翀2,3,5, 王怡2,3*, 邢新会1,2,3,4,5*
1. 清华大学深圳国际研究生院生物医药与健康工程研究院, 广东 深圳 518055;
2. 清华大学化学工程系生物化工研究所, 北京 100084;
3. 工业生物催化教育部重点实验室, 北京 100084;
4. 深圳湾实验室医药健康技术与工程研究所, 广东 深圳 518055;
5. 清华大学合成与系统生物学中心, 北京 100084
摘要:
多糖(polysaccharide)作为常见的药物递送材料,具有来源广泛、生物安全性好及功能丰富等优点,在医药及食品领域应用广泛,特别是在结肠疾病的口服靶向药物递送中具有重要的研究和应用价值。利用多糖的结构与理化特性优势,目前研究已构建出基于pH响应、微生物酶响应、活性氧响应、肠黏膜吸附和受体分子靶向等递送策略的交联型纳米粒、自组装型纳米粒及水凝胶,并在结肠炎与结肠癌等消化道疾病治疗中展现出优异效果。本文综述了基于多糖的口服靶向型药物递送体系在结肠疾病治疗中的研究进展,并对其研究和应用前景进行深入讨论。
关键词:    多糖      口服给药      药物制剂      药物递送体系      结肠疾病     
Research progress of polysaccharides-based targeted oral drug delivery systems for colonic diseases treatment
HUANG Long1,2, ZENG Wen2,3, XU Bing1,4, ZHANG Can-yang1, MA Shao-hua1, ZHANG Chong2,3,5, WANG Yi2,3*, XING Xin-hui1,2,3,4,5*
1. Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
2. Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
3. MOE Key Laboratory for Industrial Biocatalysis, Beijing 100084, China;
4. Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China;
5. Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Abstract:
Polysaccharides as one of the most common drug delivery materials have the excellent advantages, such as diverse natural sources, high biocompatibility and multi-functions. Polysaccharides have been investigated and widely used in food industry, pharmaceutical and medical fields especially in the targeted oral drug delivery for colonic diseases treatment with important research values and great potential applications. Inspired by the unique properties of polysaccharides, researchers around the world have developed the cross-linked nanoparticles, self-assembled nanoparticles and hydrogels, focusing on various drug delivery strategies such as pH-sensitive, microbial enzyme-responsive, reactive oxygen species-responsive, mucoadhesive and receptor-targeted. Exhilaratingly, the polysaccharides-based therapeutics have shown high efficacy for the treatment of digestive tract diseases, such as colitis or colonic cancer. Herein, we summarized the research progress of polysaccharides-based targeted oral drug delivery systems for colonic diseases treatment, and discussed the perspectives of the researches and application development in future.
Key words:    polysaccharide    oral administration    pharmaceutic preparation    drug delivery system    colonic disease   
收稿日期: 2021-07-20
DOI: 10.16438/j.0513-4870.2021-1073
基金项目: 深圳市可持续发展专项资助项目(KCXFZ20201221173207022).
通讯作者: 邢新会,Tel:86-10-62794771,E-mail:xhxing@tsinghua.edu.cn;王怡,Tel:86-10-62773004,E-mail:wangyi671@mail.tsinghua.edu.cn
Email: xhxing@tsinghua.edu.cn;wangyi671@mail.tsinghua.edu.cn
相关功能
PDF(5014KB) Free
打印本文
0
作者相关文章
黄龙  在本刊中的所有文章
曾文  在本刊中的所有文章
徐冰  在本刊中的所有文章
张灿阳  在本刊中的所有文章
马少华  在本刊中的所有文章
张翀  在本刊中的所有文章
王怡  在本刊中的所有文章
邢新会  在本刊中的所有文章

参考文献:
[1] Brenner H, Kloor M, Pox CP. Colorectal cancer[J]. Lancet, 2014, 383:1490-1502.
[2] Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis[J]. Nat Rev Dis Primers, 2020, 6:74.
[3] Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease[J]. Annu Rev Immunol, 2010, 28:573-621.
[4] Matsuoka K, Kobayashi T, Ueno F, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease[J]. J Gastroenterol, 2018, 53:305-353.
[5] Ungaro R, Mehandru S, Allen PB, et al. Ulcerative colitis[J]. Lancet, 2017, 389:1756-1770.
[6] Keum N, Giovannucci E. Global burden of colorectal cancer:emerging trends, risk factors and prevention strategies[J]. Nat Rev Gastroenterol Hepatol, 2019, 16:713-732.
[7] Biller L, Schrag D. Diagnosis and treatment of metastatic colorectal cancer:a review[J]. J Am Med Assoc, 2021, 325:669-685.
[8] Naeem M, Awan UA, Subhan F, et al. Advances in colon-targeted nano-drug delivery systems:challenges and solutions[J]. Arch Pharm Res, 2020, 43:153-169.
[9] Zhang X, Song H, Canup BSB, et al. Orally delivered targeted nanotherapeutics for the treatment of colorectal cancer[J]. Expert Opin Drug Deliv, 2020, 17:781-790.
[10] Lee SH, Bajracharya R, Min JY, et al. Strategic approaches for colon targeted drug delivery:an overview of recent advancements[J]. Pharmaceutics, 2020, 12:68.
[11] Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems:design trends and approaches[J]. AAPS PharmSciTech, 2015, 16:731-741.
[12] Dos Santos AM, Carvalho SG, Meneguin AB, et al. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy:challenges, advances and future perspectives[J]. J Control Release, 2021, 334:353-366.
[13] Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics[J]. Chem Soc Rev, 2012, 41:2623-2640.
[14] Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery[J]. Int J Pharm, 2001, 224:19-38.
[15] Yi Y, Xu W, Wang HX, et al. Natural polysaccharides experience physiochemical and functional changes during preparation:a review[J]. Carbohydr Polym, 2020, 234:115896.
[16] Yang X, Shi X, D'arcy R, et al. Amphiphilic polysaccharides as building blocks for self-assembled nanosystems:molecular design and application in cancer and inflammatory diseases[J]. J Control Release, 2018, 272:114-144.
[17] Shukla RK, Tiwari A. Carbohydrate polymers:applications and recent advances in delivering drugs to the colon[J]. Carbohydr Polym, 2012, 88:399-416.
[18] Zhu J, Zhong L, Chen W, et al. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride:a novel and simple colon targeted drug delivery system[J]. Food Hydrocoll, 2019, 95:562-570.
[19] Wang LH, Huang GQ, Xu TC, et al. Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery[J]. Food Hydrocol, 2019, 94:354-362.
[20] Perez Espitia PJ, Du WX, Avena-Bustillos RDJ, et al. Edible films from pectin:physical-mechanical and antimicrobial properties-a review[J]. Food Hydrocoll, 2014, 35:287-296.
[21] Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan[J]. Adv Drug Deliv Rev, 2010, 62:3-11.
[22] Mulloy B, Hogwood J, Gray E, et al. Pharmacology of heparin and related drugs[J]. Pharmacol Rev, 2016, 68:76-141.
[23] Choi KY, Han HS, Lee ES, et al. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics:beyond CD44-mediated drug delivery[J]. Adv Mater, 2019, 31:1803549.
[24] Duran-Lobato M, Niu ZG, Alonso MJ. Oral delivery of biologics for precision medicine[J]. Adv Mater, 2020, 32:1901935.
[25] Achazi K, Haag R, Ballauff M, et al. Understanding the interaction of polyelectrolyte architectures with proteins and biosystems[J]. Angew Chem Int Ed Engl, 2021, 60:3882-3904.
[26] Yu Y, Shen M, Song Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources:a review[J]. Carbohydr Polym, 2018, 183:91-101.
[27] Niu W, Chen X, Xu R, et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis:a review[J]. Carbohydr Polym, 2021, 254:117189.
[28] Khan T, Date A, Chawda H, et al. Polysaccharides as potential anticancer agents-a review of their progress[J]. Carbohydr Polym, 2019, 210:412-428.
[29] Naveed M, Phil L, Sohail M, et al. Chitosan oligosaccharide (COS):an overview[J]. Int J Biol Macromol, 2019, 129:827-843.
[30] Aguero L, Zaldivar-Silva D, Pena L, et al. Alginate microparticles as oral colon drug delivery device:a review[J]. Carbohydr Polym, 2017, 168:32-43.
[31] Rios de la Rosa JM, Tirella A, Gennari A, et al. The CD44-mediated uptake of hyaluronic acid-based carriers in macrophages[J]. Adv Healthc Mater, 2017, 6:1601012.
[32] Dos Santos AM, Meneguin AB, Akhter DT, et al. Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract[J]. Eur J Pharm Biopharm, 2021, 158:371-378.
[33] Wei Y, Gong J, Zhu W, et al. Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora[J]. BMC Microbiol, 2016, 16:255.
[34] Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery:recent progress and future perspective[J]. Adv Drug Deliv Rev, 2013, 65:1215-1233.
[35] Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions[J]. ACS Nano, 2011, 5:6791-6818.
[36] Swierczewska M, Han HS, Kim K, et al. Polysaccharide-based nanoparticles for theranostic nanomedicine[J]. Adv Drug Deliv Rev, 2016, 99:70-84.
[37] Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease[J]. Nano Today, 2017, 16:82-96.
[38] Qin XS, Luo ZG, Li XL. An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W-1/O/W-2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release[J]. Food Hydrocoll, 2021, 113:106460.
[39] Tie S, Su W, Zhang X, et al. pH-Responsive core-shell microparticles prepared by a microfluidic chip for the encapsulation and controlled release of procyanidins[J]. J Agric Food Chem, 2021, 69:1466-1477.
[40] Nugent S, Kumar D, Rampton D, et al. Intestinal luminal pH in inflammatory bowel disease:possible determinants and implications for therapy with aminosalicylates and other drugs[J]. Gut, 2001, 48:571-577.
[41] Kotla NG, Rana S, Sivaraman G, et al. Bioresponsive drug delivery systems in intestinal inflammation:state-of-the-art and future perspectives[J]. Adv Drug Deliv Rev, 2019, 146:248-266.
[42] Zeng W, He D, Xing Y, et al. Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis:a review[J]. Food Sci Hum Well, 2021, 10:119-130.
[43] Canaparo R, Foglietta F, Limongi T, et al. Biomedical applications of reactive oxygen species generation by metal nanoparticles[J]. Materials (Basel), 2020, 14:53.
[44] Bao C, Liu B, Li B, et al. Enhanced transport of shape and rigidity-tuned alpha-lactalbumin nanotubes across intestinal mucus and cellular barriers[J]. Nano Lett, 2020, 20:1352-1361.
[45] Samprasit W, Opanasopit P, Chamsai B. Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible colon-targeted delivery[J]. Pharm Dev Technol, 2021, 26:362-372.
[46] Tahara K, Samura S, Tsuji K, et al. Oral nuclear factor-kappaB decoy oligonucleotides delivery system with chitosan modified poly(D,L-lactide-co-glycolide) nanospheres for inflammatory bowel disease[J]. Biomaterials, 2011, 32:870-878.
[47] Bagre AP, Jain K, Jain NK. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin:in vitro and in vivo assessment[J]. Int J Pharm, 2013, 456:31-40.
[48] Yan Y, Sun Y, Wang P, et al. Mucoadhesive nanoparticles-based oral drug delivery systems enhance ameliorative effects of low molecular weight heparin on experimental colitis[J]. Carbohydr Polym, 2020, 246:116660.
[49] Neurath MF, Travis SP. Mucosal healing in inflammatory bowel diseases:a systematic review[J]. Gut, 2012, 61:1619-1635.
[50] Zhang S, Ermann J, Succi MD, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease[J]. Sci Transl Med, 2015, 7:300ra128.
[51] Si XY, Merlin D, Xiao B. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease[J]. World J Gastroenterol, 2016, 22:7718-7726.
[52] Zhang L, Sang Y, Feng J, et al. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery[J]. J Drug Target, 2016, 24:579-589.
[53] Soni KS, Desale SS, Bronich TK. Nanogels:an overview of properties, biomedical applications and obstacles to clinical translation[J]. J Control Release, 2016, 240:109-126.
[54] Samadian H, Maleki H, Fathollahi A, et al. Naturally occurring biological macromolecules-based hydrogels:potential biomaterials for peripheral nerve regeneration[J]. Int J Biol Macromol, 2020, 154:795-817.
[55] Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the plasma exposure of (-‍)‍-epigallocatechin gallate in mice through an enhancement in intestinal stability[J]. Eur J Pharm Sci, 2011, 44:422-426.
[56] Chuah LH, Roberts CJ, Billa N, et al. Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan nanoparticles[J]. Colloids Surf B Biointerfaces, 2014, 116:228-236.
[57] Alkhader E, Roberts CJ, Rosli R, et al. Pharmacokinetic and anti-colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles[J]. J Biomater Sci Polym Ed, 2018, 29:2281-2298.
[58] Arif M, Chi Z, Liu YJ, et al. Preparation, characterization, and in vitro drug release behavior of thiolated alginate nanoparticles loaded budesonide as a potential drug delivery system toward inflammatory bowel diseases[J]. J Biomater Sci Polym Ed, 2020, 31:2299-2317.
[59] Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy[J]. Int J Nanomed, 2021, 16:2995-3020.
[60] Xiao B, Viennois E, Chen Q, et al. Silencing of intestinal glycoprotein CD98 by orally targeted nanoparticles enhances chemosensitization of colon cancer[J]. ACS Nano, 2018, 12:5253-5265.
[61] Chen C, Zhao S, Karnad A, et al. The biology and role of CD44 in cancer progression:therapeutic implications[J]. J Hematol Oncol, 2018, 11:64.
[62] Xu J, Zhang Y, Xu J, et al. Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment[J]. Biomaterials, 2019, 216:119247.
[63] Gou S, Huang Y, Wan Y, et al. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis[J]. Biomaterials, 2019, 212:39-54.
[64] Zhang C, Zhai X, Zhao G, et al. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights[J]. Carbohydr Polym, 2015, 134:158-166.
[65] Zhai X, Zhang C, Zhao G, et al. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan[J]. J Nanobiotechnol, 2017, 15:4.
[66] Narayan R, Gadag S, Cheruku SP, et al. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles:a smart pH-responsive and receptor-targeted system for colorectal cancer therapy[J]. Carbohydr Polym, 2021, 261:117893.
[67] Zhang YJ, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharm Sin B, 2018, 8:34-50.
[68] Shen MY, Liu TI, Yu TW, et al. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer[J]. Biomaterials, 2019, 197:86-100.
[69] Stubelius A, Lee S, Almutairi A. The chemistry of boronic acids in nanomaterials for drug delivery[J]. Acc Chem Res, 2019, 52:3108-3119.
[70] Broaders KE, Grandhe S, Frechet JM. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics[J]. J Am Chem Soc, 2011, 133:756-758.
[71] Bertoni S, Liu Z, Correia A, et al. pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease[J]. Adv Funct Mater, 2018, 28:1806175.
[72] Li C, Zhao Y, Cheng J, et al. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota[J]. Adv Sci, 2019, 6:1900610.
[73] Lee S, Stubelius A, Hamelmann N, et al. Inflammation-responsive drug-conjugated dextran nanoparticles enhance anti-inflammatory drug efficacy[J]. ACS Appl Mater Interfaces, 2018, 10:40378-40387.
[74] Lee Y, Sugihara K, Gillilland MG 3rd, et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis[J]. Nat Mater, 2020, 19:118-126.
[75] Hu QD, Tang GP, Chu PK. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery:from design to applications[J]. Acc Chem Res, 2014, 47:2017-2025.
[76] Bai HZ, Wang JW, Phan CU, et al. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment[J]. Nat Commun, 2021, 12:759.
[77] Xue F, Wang Y, Zhang Q, et al. Self-assembly of affinity-controlled nanoparticles via host-guest interactions for drug delivery[J]. Nanoscale, 2018, 10:12364-12377.
[78] Catenacci L, Sorrenti M, Perteghella S, et al. Combination of inulin and beta-cyclodextrin properties for colon delivery of hydrophobic drugs[J]. Int J Pharm, 2020, 589:119861.
[79] Bai Y, Liu CP, Chen D, et al. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery[J]. Carbohydr Polym, 2020, 246:116654.
[80] Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery[J]. Int J Biol Macromol, 2014, 64:353-367.
[81] Pilipenko I, Korzhikov-Vlakh V, Sharoyko V, et al. pH-Sensitive chitosan-heparin nanoparticles for effective delivery of genetic drugs into epithelial cells[J]. Pharmaceutics, 2019, 11:317.
[82] Maretti E, Pavan B, Rustichelli C, et al. Chitosan/heparin polyelectrolyte complexes as ion-paring approach to encapsulate heparin in orally administrable SLN:in vitro evaluation[J]. Colloids Surf A, 2021, 608:125606.
[83] Lee MC, Huang YC. Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells[J]. Int J Biol Macromol, 2019, 131:949-958.
[84] Boni FI, Almeida A, Lechanteur A, et al. Mucoadhesive nanostructured polyelectrolytes complexes modulate the intestinal permeability of methotrexate[J]. Eur J Pharm Sci, 2018, 111:73-82.
[85] Di JW, Du YM, Gao X, et al. Research progress of layer-by-layer self-assembly technology in drug delivery[J]. Acta Pharm Sin (药学学报), 2020, 55:2595-2605.
[86] Alkekhia D, Hammond PT, Shukla A. Layer-by-layer biomaterials for drug delivery[J]. Annu Rev Biomed Eng, 2020, 22:1-24.
[87] Oshi MA, Lee J, Naeem M, et al. Curcumin nanocrystal/pH-responsive polyelectrolyte multilayer core-shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis[J]. Biomacromolecules, 2020, 21:3571-3581.
[88] Siboro SAP, Anugrah DSB, Ramesh K, et al. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior[J]. Carbohydr Polym, 2021, 260:117779.
[89] Kono H, Otaka F, Ozaki M. Preparation and characterization of guar gum hydrogels as carrier materials for controlled protein drug delivery[J]. Carbohydr Polym, 2014, 111:830-840.
[90] Laroui H, Dalmasso G, Nguyen HT, et al. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model[J]. Gastroenterology, 2010, 138:843-853.
[91] Shanmugapriya K, Kim H, Kang HW. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy[J]. Int J Biol Macromol, 2020, 158:1163-1174.
[92] Stealey S, Guo X, Majewski R, et al. Calcium-oligochitosan-pectin microcarrier for colonic drug delivery[J]. Pharm Dev Technol, 2020, 25:260-265.
[93] Xu W, Su W, Xue Z, et al. Research on preparation of 5-ASA colon-specific hydrogel delivery system without crosslinking agent by mechanochemical method[J]. Pharm Res, 2021, 38:693-706.
[94] Ding YF, Sun T, Li S, et al. Oral colon-targeted konjac glucomannan hydrogel constructed through noncovalent cross-linking by cucurbit 8 uril for ulcerative colitis therapy[J]. ACS Appl Bio Mater, 2020, 3:10-19.
[95] Zhang S, Kang L, Hu S, et al. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease[J]. Int J Biol Macromol, 2021, 167:1598-1612.
[96] Pandey M, Choudhury H, D/O Segar Singh SK, et al. Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery:fabrication, characterization and in vitro release kinetics[J]. Molecules, 2021, 26:2704.
[97] Vakili MR, Mohammed-Saeid W, Aljasser A, et al. Development of mucoadhesive hydrogels based on polyacrylic acid grafted cellulose nanocrystals for local cisplatin delivery[J]. Carbohydr Polym, 2021, 255:117332.
[98] Rakhshaei R, Namazi H, Hamishehkar H, et al. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties[J]. Int J Biol Macromol, 2020, 150:1121-1129.
[99] Omer AM, Ahmed MS, El-Subruiti GM, et al. pH-Sensitive alginate/carboxymethyl chitosan/aminated chitosan microcapsules for efficient encapsulation and delivery of diclofenac sodium[J]. Pharmaceutics, 2021, 13:338.
[100] Park W, Bae BC, Na K. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment[J]. Biomaterials, 2016, 77:227-234.
[101] Necas J, Bartosikova L. Carrageenan:a review[J]. Vet Med, 2013, 58:187-205.
[102] Zimmer S, Grebe A, Bakke SS, et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming[J]. Sci Transl Med, 2016, 8:333ra350.