药学学报, 2022, 57(4): 1054-1062
引用本文:
陈舒苗, 于津鹏, 张笑凡, 朱晓鹏, 罗素兰, 长孙东亭. 烟碱型乙酰胆碱受体α3[K152E,E184D,Q195T]β4突变型的构建及其功能研究[J]. 药学学报, 2022, 57(4): 1054-1062.
CHEN Shu-miao, YU Jin-peng, ZHANG Xiao-fan, ZHU Xiao-peng, LUO Su-lan, ZHANGSUN Dong-ting. Construction and functional evaluation of an α3[K152E, E184D, Q195T]β4 nicotinic acetylcholine receptor mutant[J]. Acta Pharmaceutica Sinica, 2022, 57(4): 1054-1062.

烟碱型乙酰胆碱受体α3[K152E,E184D,Q195T]β4突变型的构建及其功能研究
陈舒苗1, 于津鹏2, 张笑凡1, 朱晓鹏2, 罗素兰1,2*, 长孙东亭1*
1. 海南大学药学院, 海南大学热带生物资源教育部重点实验室, 海南 海口 570228;
2. 广西大学医学院, 广西 南宁 530004
摘要:
α3β4烟碱型乙酰胆碱受体(nicotinic acetylcholine receptors,nAChRs)是成瘾、癌症和肥胖等重要疾病的潜在新靶点。本研究对大鼠(rat,r)α3β4 nAChRs的α3亚基上的3个氨基酸位点同时进行突变,将这3个位点分别突变为rα6亚基上与α3亚基上相对应的氨基酸种类,构建α3[K152E,E184D,Q195T]β4三点突变型受体,并研究其功能。利用PCR介导的定点突变方法构建了α3[K152E,E184D,Q195T]三点突变体载体,体外转录获得相应的cRNA,与野生型β4亚基的cRNA按相同比例注射到非洲爪蟾卵母细胞中进行重组表达,然后用双电极电压钳技术检测其受体活性和功能。测定α3β4 nAChRs野生型和突变型在乙酰胆碱、尼古丁和金雀花碱3种不同激动剂的诱导下,其配体门控电流的大小以及门控特征,比较野生型和突变型受体之间的功能差异。α3[K152E,E184D,Q195T]三点突变体的功能与野生型相比存在显著差异。乙酰胆碱、尼古丁和金雀花碱对α3β4 nAChR野生型的半数最大效应浓度(EC50)分别为277.5、34.02和23.05µmol·L-1;针对三点突变体,3种激动剂的EC50分别为170.5、26.6和98.45µmol·L-1。3种激动剂对突变体的EC50与野生型受体的EC50相比,其活性变化分别为0.6、0.8和4.3倍。其中突变型受体对金雀花碱的活性影响最显著,其激动剂活性下降了77%。此外,与1 mmol·L-1乙酰胆碱诱导的峰值电流幅度相比,金雀花碱对野生型和突变型α3β4 nAChRs的最大激动效率(Emax)从94.12%提升至155.08%。α3[K152E,E184D,Q195T]β4三点突变型明显降低了对金雀花碱的敏感性,但其最大激动电流幅度明显变大。三点突变型略微增强了对乙酰胆碱和尼古丁的敏感性,说明α3亚基上的这3个氨基酸对α3β4 nAChRs的配体结合功能影响较大,对不同激动剂的影响情况各异,这为今后探究α3β4 nAChRs重要受体的精细结构和功能以及相关疾病的发病机制研究提供了很好的线索。
关键词:    PCR介导定点诱变      α3β4烟碱型乙酰胆碱受体突变型      电生理学功能研究      激动剂      通道开放分子机制     
Construction and functional evaluation of an α3[K152E, E184D, Q195T]β4 nicotinic acetylcholine receptor mutant
CHEN Shu-miao1, YU Jin-peng2, ZHANG Xiao-fan1, ZHU Xiao-peng2, LUO Su-lan1,2*, ZHANGSUN Dong-ting1*
1. Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
2. Medical College, Guangxi University, Nanning 530004, China
Abstract:
α3β4 nicotinic acetylcholine receptors (nAChRs) are potential therapeutic targets in diseases such as addiction, cancer, and obesity. In this study, by replacing three amino acids of the α3 subunit with the corresponding positions of the rα6 subunit simultaneously, an α3[K152E, E184D, Q195T] subunit mutant was constructed by PCR-mediated site-directed mutagenesis and its cRNA was obtained by in vitro transcription. The cRNA of mutant subunits mixed in equal molar ratios with β4 subunits were microinjected into Xenopus oocytes. The pharmacological activity and function of α3[K152E, E184D, Q195T]β4 nAChR was evaluated by a two-electrode voltage clamp electrophysiological technique. Acetylcholine, nicotine, and cytisine were used as agonists to evaluate the magnitude of ligand-gated currents and gating characteristics of wild-type and mutant α3β4 nAChRs. The half-maximal effective concentrations (EC50) of acetylcholine, nicotine, and cytisine on wild-type α3β4 nAChRs were 277.5, 34.02 and 23.05 µmol·L-1, respectively, while their EC50 values with α3[K152E, E184D, Q195T]β4 nAChR were 170.5, 26.6, and 98.45 µmol·L-1, respectively. Thus these EC50 values for the three agonists towards the mutant receptor were changed 0.6-fold, 0.8-fold, and 4.3-fold, respectively, compared with the wild-type receptor; cytisine was most strongly affected, with a 77% decrease in potency. However, the maximum agonistic efficiency (Emax) of cytisine on wild-type and mutant α3β4 nAChRs was increased from 94.12% to 155.08% relative to the peak current amplitude induced by 1 mmol·L-1 acetylcholine. Thus, although the α3[K152E, E184D, Q195T]β4 nAChR had significantly reduced sensitivity to cytisine, the maximum current amplitude induced by cytisine was clearly increased. This mutant had slightly increased sensitivity to acetylcholine and nicotine. The results indicate that these three amino acids of the α3 subunit have important and varying effects on ligand binding to the α3β4 nAChR, providing a basis for further structure-functional research on α3β4 nAChR, as well as the pathology of related diseases.
Key words:    PCR mediated site-directed mutation    the mutant of α3β4 nicotinic acetylcholine receptor    electrophysiological evaluation    agonist    molecular mechanism of channel opening   
收稿日期: 2021-11-15
DOI: 10.16438/j.0513-4870.2021-1632
基金项目: 国家自然科学基金资助项目(41966003).
通讯作者: 罗素兰,Tel:86-898-66289538,E-mail:luosulan2003@163.com;长孙东亭,E-mail:zhangsundt@163.com
Email: luosulan2003@163.com;zhangsundt@163.com
相关功能
PDF(3694KB) Free
打印本文
0
作者相关文章
陈舒苗  在本刊中的所有文章
于津鹏  在本刊中的所有文章
张笑凡  在本刊中的所有文章
朱晓鹏  在本刊中的所有文章
罗素兰  在本刊中的所有文章
长孙东亭  在本刊中的所有文章

参考文献:
[1] Li X, You S, Xiong J, et al. α-Conotoxin TxID and[S9K]TxID, α3β4 nAChR antagonists, attenuate expression and reinstatement of nicotine-induced conditioned place preference in mice[J]. Mar Drugs, 2020, 18:646.
[2] Deshpande A, Vinayakamoorthy RM, Garg BK, et al. Why does knocking out NACHO, but not RIC3, completely block expression of α7 nicotinic receptors in mouse brain?[J]. Biomolecules, 2020, 10:470.
[3] Elayouby KS, Ishikawa M, Dukes AJ, et al. α3* nicotinic acetylcholine receptors in the habenula-interpeduncular nucleus circuit regulate nicotine intake[J]. J Neurosci, 2021, 41:1779-1787.
[4] Yang T, Xiao T, Sun Q, et al. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials[J]. Acta Pharm Sin B, 2017, 7:611-622.
[5] Cooper SY, Henderson BJ. The impact of electronic nicotine delivery system (ENDS) flavors on nicotinic acetylcholine receptors and nicotine addiction-related behaviors[J]. Molecules, 2020, 25:4223.
[6] Salas R, Cook KD, Bassetto L, et al. The α3 and β4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice[J]. Neuropharmacology, 2004, 47:401-407.
[7] Liu Y, Qian J, Sun Z, et al. Cervical cancer correlates with the differential expression of nicotinic acetylcholine receptors and reveals therapeutic targets[J]. Mar Drugs, 2019, 17:256.
[8] Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers[J]. Mol Cancer Res, 2014, 12:14-23.
[9] Mineur YS, Abizaid A, Rao Y, et al. Nicotine decreases food intake through activation of POMC neurons[J]. Science, 2011, 332:1330-1332.
[10] Harpsoe K, Hald H, Timmermann DB, et al. Molecular determinants of subtype-selective efficacies of cytisine and the novel compound NS3861 at heteromeric nicotinic acetylcholine receptors[J]. J Biol Chem, 2013, 288:2559-2570.
[11] Azam L, Yoshikami D, Mcintosh JM. Amino acid residues that confer high selectivity of the α6 nicotinic acetylcholine receptor subunit to α-conotoxin MII[S4A, E11A, L15A] [J]. J Biol Chem, 2008, 283:11625-11632.
[12] Hone AJ, Ruiz M, Scadden M, et al. Positional scanning mutagenesis of α-conotoxin PeIA identifies critical residues that confer potency and selectivity for α6/α3β2β3 and α3β2 nicotinic acetylcholine receptors[J]. J Biol Chem, 2013, 288:25428-25439.
[13] Gharpure A, Teng J, Zhuang Y, et al. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor[J]. Neuron, 2019, 104:501-511.
[14] Arroyo S, Bennett C, Aziz D, et al. Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons[J]. J Neurosci, 2012, 32:3859-3864.
[15] Park J, Taly A, Bourreau J, et al. Partial agonist activity of neonicotinoids on rat nicotinic receptors:consequences over epinephrine secretion and in vivo blood pressure[J]. Int J Mol Sci, 2021, 22:5106.
[16] Hone AJ, Mcintosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain[J]. FEBS Lett, 2018, 592:1045-1062.
[17] Abburi C, Mcdaid J. Ethanol interaction with α3β4 nicotinic acetylcholine receptors in neurons of the laterodorsal tegmentum[J]. Alcohol Clin Exp Res, 2021, 45:2495-2505.
[18] Terry AV, Callahan PM. Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery[J]. Nicotine Tob Res, 2019, 21:383-394.
[19] Kuryatov A, Luo J, Cooper J, et al. Nicotine acts as a pharmacological chaperone to up-regulate human α4β2 acetylcholine receptors[J]. Mol Pharmacol, 2005, 68:1839-1851.
[20] Costa V, Nistri A, Cavalli A, et al. A structural model of agonist binding to the α3β4 neuronal nicotinic receptor[J]. Br J Pharmacol, 2003, 140:921-931.
[21] Grady S, Marks MJ, Wonnacott S, et al. Characterization of nicotinic receptor-mediated[3H]dopamine release from synaptosomes prepared from mouse striatum[J]. J Neurochem, 1992, 59:848-856.
[22] Lindovsky J, Kaniakova M, Svobodova L, et al. Role of negatively charged amino acids in β4 F-loop in activation and desensitization of α3β4 rat neuronal nicotinic receptors[J]. Biochim Biophys Acta, 2008, 1778:864-871.
[23] Nieves-Cintron M, Caballero-Rivera D, Silva WI, et al. Functional contribution of α3L8' to the neuronal nicotinic α3 receptor[J]. J Neurosci Res, 2008, 86:2884-2894.
[24] Walsh RM, Roh SH, Gharpure A, et al. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor[J]. Nature, 2018, 557:261-265.
[25] Chen JH, Bai DL. Advances in the research on nicotinic acetylcholine receptors agonists[J]. Acta Pharm Sin (药学学报), 2002, 37:309-315.