药学学报, 2022, 57(4): 1155-1162
引用本文:
马陇豫, 冯闪, 张审, 胜金金, 刘超群*. 功能化介孔碳纳米球负载银离子的光热协同抗菌研究[J]. 药学学报, 2022, 57(4): 1155-1162.
MA Long-yu, FENG Shan, ZHANG Shen, SHENG Jin-jin, LIU Chao-qun*. A synergistic photothermal antibacterial system based on silver-infused functionalized mesoporous carbon nanospheres[J]. Acta Pharmaceutica Sinica, 2022, 57(4): 1155-1162.

功能化介孔碳纳米球负载银离子的光热协同抗菌研究
马陇豫, 冯闪, 张审, 胜金金, 刘超群*
河南大学药学院, 河南 开封 475004
摘要:
耐抗生素菌株的出现严重降低了传统抗生素疗法的效率。开发一种有效消除这种细菌感染的新型替代抗生素疗法变得至关重要。光热治疗(PTT)具有组织渗透性、时空可控性、不产生耐药性且能广谱抗菌等优点,但PTT的高效杀菌效果通常需要极高温度(55~65℃),此过程不可避免会对正常组织造成损伤。银纳米粒子(AgNPs)被用作广谱抗菌剂,其抗菌活性主要来源于银离子(Ag+)的释放。然而,过量的AgNPs不仅会对机体产生毒性,而且还会造成贵金属的浪费。本课题采用氧化后的介孔碳纳米球(OMCN)作为光热材料负载Ag+制备复合材料OMCN-Ag+。该体系不仅具有高效抗菌活性,还能减少贵金属Ag的浪费及降低毒副作用,此外,精确控制的温和光热可克服传统光热抗菌过程中温度过高对正常组织造成的损伤。该抗菌治疗体系在体内和体外都有良好的生物相容性,且能有效清除小鼠伤口感染部位的细菌,从而促进小鼠伤口愈合。本研究中动物实验均按照河南大学动物实验伦理委员会批准的指导方针进行。
关键词:    光热治疗      纳米药物            抗菌      协同治疗     
A synergistic photothermal antibacterial system based on silver-infused functionalized mesoporous carbon nanospheres
MA Long-yu, FENG Shan, ZHANG Shen, SHENG Jin-jin, LIU Chao-qun*
College of Pharmacy, Henan University, Kaifeng 475004, China
Abstract:
The emergence of antibiotic-resistant strains seriously reduces the efficiency of traditional antibiotic therapy. The development of a new alternative antibiotic method to effectively eliminate this bacterial infection has become a critical issue. Photothermal therapy (PTT) has shown many advantages in tissue penetration, spatiotemporal specificity, no drug resistance and broad-spectrum antimicrobial ability. However, extremely high temperature (55-65℃) is needed to achieve highly efficient bactericidal effect during PTT treatment process. Thus, this procedure will inevitably cause collateral damage to normal tissues. Silver nanoparticles (AgNPs) are one of the most commonly used broad-spectrum antimicrobial agents. Its antimicrobial activity is mainly derived from the release of silver ions (Ag+). However, excessive AgNPs not only would cause toxic to the body, but also waste precious metals. In this study, oxidized mesoporous carbon nanospheres (OMCN) were used as photothermal materials to prepare OMCN-Ag+ composites. The composite material can improve the antibacterial activity, reduce the waste of metal Ag and decrease the toxic and side effects. Moreover, the precisely controlled mild heat can overcome the shortcoming such as the damage to normal tissue caused by the excessive temperature during traditional photothermal antimicrobial process. The antimicrobial treatment system exhibits a good biocompatibility both in vitro and in vivo. Specially, the designed nanosytem can effectively eliminate the bacteria from the infected wound, subsequently promoting the process of wound healing. All animal experiments were carried out with approval of the Animal Experiment Ethics Committee of Henan University.
Key words:    photothermal therapy    nanomedicine    silver    antibacterial    combined therapy   
收稿日期: 2021-07-13
DOI: 10.16438/j.0513-4870.2021-1037
基金项目: 河南省青年科学基金项目(202300410061);河南省重点研发与推广专项(科技攻关)项目(212102310231);河南省高等学校重点科研项目(21A430006).
通讯作者: 刘超群,Tel/Fax:86-371-23832100,E-mail:cqliu@henu.edu.cn
Email: cqliu@henu.edu.cn
相关功能
PDF(7294KB) Free
打印本文
0
作者相关文章
马陇豫  在本刊中的所有文章
冯闪  在本刊中的所有文章
张审  在本刊中的所有文章
胜金金  在本刊中的所有文章
刘超群*  在本刊中的所有文章

参考文献:
[1] Yang X, Yang J, Wang L, et al. Pharmaceutical intermediate-modified gold nanoparticles:against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold[J]. ACS Nano, 2017, 11:5737-5745.
[2] Sharma VK, Johnson N, Cizmas L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016, 150:702-714.
[3] Liu Y, Guo Z, Li F, et al. Multifunctional magnetic copper ferrite nanoparticles as fenton-like reaction and near-infrared photothermal agents for synergetic antibacterial therapy[J]. ACS Appl Mater Interfaces, 2019, 11:31649-31660.
[4] Fan X, Yang F, Huang J, et al. Metal-organic-framework-derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy[J]. Nano Lett, 2019, 19:5885-5896.
[5] Wang M, Zhao Y, Chang M, et al. Azo initiator loaded black mesoporous titania with multiple optical energy conversion for synergetic photo-thermal-dynamic therapy[J]. ACS Appl Mater Interfaces, 2019, 11:47730-47738.
[6] Su LN, Zhang JX, Deng YH, et al. Black phosphorus loaded with zinc ions for enhanced photothermal therapy of prostate cancer[J]. Acta Pharm Sin (药学学报), 2020, 55:1666-1671.
[7] Xu JW, Yao K, Xu ZK. Nanomaterials with a photothermal effect for antibacterial activities:an overview[J]. Nanoscale, 2019, 11:8680-8691.
[8] Peng L, Hung CT, Wang S, et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures[J]. J Am Chem Soc, 2019, 141:7073-7080.
[9] Qiu H, Pu F, Liu Z, et al. Depriving bacterial adhesion-related molecule to inhibit biofilm formation using CeO2-decorated metal-organic frameworks[J]. Small, 2019, 15:1902522.
[10] Meng Y, Wang S, Li C, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres[J]. Biomaterials, 2016, 100:134-142.
[11] Yang GG, Zhou DJ, Pan ZY, et al. Multifunctional low-temperature photothermal nanodrug with in vivo clearance, ROS-scavenging and anti-inflammatory abilities[J]. Biomaterials, 2019, 216:119280.
[12] Kim T, Zhang Q, Li J, et al. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection[J]. ACS Nano, 2018, 12:5615-5625.
[13] Wu S, Li A, Zhao X, et al. Silica-coated gold-silver nanocages as photothermal antibacterial agents for combined anti-infective therapy[J]. ACS Appl Mater Interfaces, 2019, 11:17177-17183.
[14] Cao F, Ju E, Zhang Y, et al. An efficient and benign antimicrobial depot based on silver-infused MoS2[J]. ACS Nano, 2017, 11:4651-4659.
[15] Li W, Dong K, Wang H, et al. Remote and reversible control of in vivo bacteria clustering by NIR-driven multivalent upconverting nanosystems[J]. Biomaterials, 2019, 217:119310.
[16] Sang Y, Huang Y, Li W, et al. Bioinspired design of Fe3+-doped mesoporous carbon nanospheres for enhanced nanozyme activity[J]. Chem Eur J, 2018, 24:7259-7263.
[17] Wang C, Xiao Y, Zhu W, et al. Photosensitizer-modified MnO2 nanoparticles to enhance photodynamic treatment of abscesses and boost immune protection for treated mice[J]. Small, 2020, 16:2000589.
[18] Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angew Chem Int Ed, 2010, 49:7987-7991.
[19] Richter AP, Brown JS, Bharti B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nat Nanotechnol, 2015, 10:817-823.
[20] Zhang Y, Sun P, Zhang L, et al. Silver-infused porphyrinic metal-organic framework:surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection[J]. Adv Funct Mater, 2019, 29:1808594.
[21] Hu D, Zou L, Li B, et al. Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria-targeted polydopamine nanoparticles with nano-localized hyperpyrexia[J]. ACS Biomater Sci Eng, 2019, 5:5169-5179.
[22] Yin W, Yu J, Lv F, et al. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications[J]. ACS Nano, 2016, 10:11000-11011.
[23] Qiao Y, He J, Chen W, et al. Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells[J]. ACS Nano, 2020, 14:3299-3315.
[24] Dai X, Zhao Y, Yu Y, et al. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters[J]. ACS Appl Mater Interfaces, 2017, 9:30470-30479.