药学学报, 2022, 57(4): 1172-1179
周晓菲, 庄月棠, 李睿, 张丽, 姚红娟, 李亮. 基于胰腺癌细胞的杂化外泌体的不同制备方法与表征的比较研究[J]. 药学学报, 2022, 57(4): 1172-1179.
ZHOU Xiao-fei, ZHUANG Yue-tang, LI Rui, ZHANG Li, YAO Hong-juan, LI Liang. Comparative study on two different preparation methods and characterization of pancreatic cancer cell-derived hybrid exosome[J]. Acta Pharmaceutica Sinica, 2022, 57(4): 1172-1179.

周晓菲1,2#, 庄月棠1#, 李睿1, 张丽1, 姚红娟1*, 李亮1*
1. 中国医学科学院、北京协和医学院医药生物技术研究所, 国家卫健委抗生素生物工程重点实验室, 北京 100050;
2. 中山大学附属第一医院, 科研与学科建设处, 广东 广州 510030
本研究基于外泌体的高亲和力、良好稳定性和低免疫原性,以及脂质体的长循环和被动靶向性的特点,结合外泌体和脂质体的各自优势,利用人胰腺癌细胞分泌的外泌体,通过与脂质体膜融合后自组装,成功构建一种新型纳米载药系统即杂化外泌体,并在实验室条件下,进行孵育和冻融法两种制备方法的比较和表征。结果表明,分别利用人胰腺癌HuP-T3和Panc0403细胞系连续培养48 h后提取的外泌体产量最高,利用前者的外泌体产量为0.83 ±0.07 mg/108细胞,后者为0.79 ±0.10 mg/108细胞;并且,与经12 h、37℃孵育法相比,经冻融法获得的杂化外泌体的膜融合度高,粒径和多分散指数(PDI)值较低,zeta电位绝对值大,提示该方法制备的杂化外泌体稳定性更好。研究表明,冻融法得到的杂化外泌体具有更简便的制备方法和适宜的理化性质,这为后续包载不同抗癌药物以构建载药递送系统治疗胰腺癌等实体瘤提供了较为扎实的前期实验基础。
关键词:    外泌体      脂质体      杂化外泌体      冻融法      孵育法     
Comparative study on two different preparation methods and characterization of pancreatic cancer cell-derived hybrid exosome
ZHOU Xiao-fei1,2#, ZHUANG Yue-tang1#, LI Rui1, ZHANG Li1, YAO Hong-juan1*, LI Liang1*
1. Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Research and Disciplinary Development Office, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510030, China
In this study, a novel nano-drug delivery system, namely hybrid exosome, was constructed via membrane self-assembly of pancreatic cancer cell-derived exosomes with liposomes, which inherits the functionalities of exosomes, including high affinity, good stability and low immunogenicity, but also unites the characteristic of liposomes (e.g., long circulation time, high loading ability) to achieve precise drug navigation and minimum adverse effects. Specifically, two different preparation methods-repeated freeze-thawing and 37℃ incubation were used to fabricate hybrid exosomes at laboratory scale. Comparative analysis and characterization of these synthesized samples were performed based upon size, zeta potential and membrane fusion efficiency. The results showed that the highest exosome yield was attainted after culture for 48 h, with the exosome yield of 0.83 ±0.07 mg/108 cells for HuP-T3 cell line and 0.79 ±0.10 mg/108 cells for Panc0403 cell line. Hybrid exosomes obtained by freeze-thaw method were shown to have higher membrane fusion rate, lower size and polydispersity index (PDI), higher zeta potential and relative more stable, as compared with that made by incubation at 37℃ for 12 h, indicating the former approach is more suitable to construct hybrid exosomes with desirable physicochemical properties. This result may provide a preliminary experimental basis for the subsequent delivery of different anticancer drugs for the treatment of solid tumors such as pancreatic cancer.
Key words:    exosome    liposome    hybrid exosome    freeze-thaw cycle    incubation   
收稿日期: 2021-07-27
DOI: 10.16438/j.0513-4870.2021-1111
基金项目: 国家自然科学基金资助项目(81773671,81828010);国家科技重大专项项目(2018ZX09711001-007);中国医学科学院医学与健康科技创新工程项目(2021-1-I2M-026).
通讯作者: 李亮,Tel:86-10-63165824,E-mail:liliang@imb.pumc.edu.cn;姚红娟,Tel:86-10-63153390,E-mail:yaohongjuan00@163.com
Email: liliang@imb.pumc.edu.cn;yaohongjuan00@163.com
PDF(1677KB) Free
周晓菲  在本刊中的所有文章
庄月棠  在本刊中的所有文章
李睿  在本刊中的所有文章
张丽  在本刊中的所有文章
姚红娟  在本刊中的所有文章
李亮  在本刊中的所有文章

[1] Johnstone RM, Adam M, Hammond JR. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262:9412-9420.
[2] Deng S, Zhang L, Wang P, et al. Design and in vitro evaluation of delivery systems for co-delivery of siRNA and proteins by mimetic exosomes[J]. Acta Pharm Sin (药学学报), 2020, 55:139-145.
[3] Johnsen KB, Gudbergsson JM, Skov MN, et al. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy[J]. Biochim Biophys Acta, 2014, 1846:75-87.
[4] Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J]. Biomaterials, 2014, 35:2383-2390.
[5] Kooijmans SAA, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles[J]. J Control Release, 2013, 172:229-238.
[6] Si Y, Kim S, Zhang E, et al. Targeted exosomes for drug delivery:biomanufacturing, surface tagging, and validation[J]. Biotechnol J, 2019, 15:e1900163.
[7] Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection[J]. J Biotechnol, 2013, 165:77-84.
[8] Srivastava A, Amreddy N, Babu A, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells[J]. Sci Rep, 2016, 6:38541.
[9] Alvarez-erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29:341-345.
[10] Abu Lila AS, Ishida T. Liposomal delivery systems :design optimization and current applications[J]. Biol Pharm Bull, 2017, 40:1-10.
[11] Lin Y, Wu J, Gu W, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Adv Sci (Weinh), 2018, 5:1700611.
[12] Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes[J]. Sci Rep, 2016, 6:21933.
[13] Rayamajhi S, Nguyen TDT, Marasini R, et al. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery[J]. Acta Biomater, 2019, 94:482-494.
[14] Cheng L, Zhang X, Tang J, et al. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy[J]. Biomaterials, 2021, 275:120964.
[15] Foldvari M. Observations of membrane fusion in a liposome dispersion:the missing fusion intermediate?[J]. F1000Res, 2020, 4:4.
[16] Hafez IM, Cullis PR. Roles of lipid polymorphism in intracellular delivery[J]. Adv Drug Deliv Rev, 2001, 47:139-148.
[17] OhtaIino S, Pasenkiewicz-Gierula M, Takaoka Y, et al. Fast lipid disorientation at the onset of membrane fusion revealed by molecular dynamics simulations[J]. Biophys J, 2001, 81:217-224.
[18] Bailey AL, Cullis PR.Lipid Polymorphism and Membrane Properties[M]. Vol 9. Toronto:Academic Press, 1997:359-373.
[19] Chernomordik LV, Kozlov MM. Membrane hemifusion:crossing a chasm in two leaps[J]. Cell, 2005, 123:375-382.
[20] Peter MK, Vijay S. Control of membrane fusion mechanism by lipid composition:predictions from ensemble molecular dynamics[J]. PLoS Comput Biol, 2007, 3:2228-2238.
[21] Callow RA, Mcgrath JJ. Thermodynamic modeling and cryomicroscopy of cell-size, unilamellar, and paucilamellar liposomes[J]. Cryobiology, 1985, 22:251-267.
[22] Costa AP, Xu X, Burgess DJ. Freeze-anneal-thaw cycling of unilamellar liposomes:effect on encapsulation efficiency[J]. Pharm Res, 2014, 31:97-103.
[23] Macdonald RC, Jones FD, Qiu R. Fragmentation into small vesicles of dioleoylphosphatidylcholine bilayers during freezing and thawing[J]. Biochim Biophys Acta, 1994, 1191:362-370.
[24] Oku N, Macdonald RC. Differential effects of alkali metal chlorides on formation of giant liposomes by freezing and thawing and dialysis[J]. Biochem, 1983, 22:855-863.
[25] Chakraborty S, Doktorova M, Molugu TR, et al. How cholesterol stiffens unsaturated lipid membranes[J]. Proc Natl Acad Sci U S A, 2020, 117:21896-21905.
[26] Breisblatt W, Ohki S. Fusion in phospholipid spherical membranes I. Effect of temperature and lysolecithin[J]. J Membr Biol, 1975, 23:385-401.
[27] Prestegard JH, Fellmeth B. Fusion of dimyristoyllecithin vesicles as studied by proton magnetic resonance spectroscopy[J]. Biochemistry, 1974, 13:1122-1126.
[28] Käsbauer M, Lasic DD, Winterhalter M. Polymer induced fusion and leakage of small unilamellar phospholipid vesicles:effect of surface grafted polyethylene-glycol in the presence of free PEG[J]. Chem Phys Lipids, 1997, 86:153-159.
[29] Mare R, Paolinob D, Celiacet C, et al. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes[J]. Int J Pharm, 2018, 552:414-421.
[30] Patel DB, Gray KM, Santharam Y, et al. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles[J]. Bioeng Transl Med, 2017, 2:170-179.
[31] Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018(MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7:1535750.
[32] Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75:193-208.
1.邓赛, 张灵敏, 王萍, 李仕颖, 林潮金, 傅小媚, 余细勇.人工外泌体共递送siRNA和蛋白的递送系统的设计及体外评价[J]. 药学学报, 2020,55(1): 139-145