药学学报, 2022, 57(4): 1193-1202
引用本文:
宋芸, 张鑫瑞, 李政, 孙哲, 李澳旋, 杜晓蓉, 乔永刚. 基于SSR分子标记的柴胡遗传多样性与遗传结构分析[J]. 药学学报, 2022, 57(4): 1193-1202.
SONG Yun, ZHANG Xin-rui, LI Zheng, SUN Zhe, LI Ao-xuan, DU Xiao-rong, QIAO Yong-gang. Genetic diversity and genetic structure analysis of Bupleurum chinense DC. based on SSR molecular marker[J]. Acta Pharmaceutica Sinica, 2022, 57(4): 1193-1202.

基于SSR分子标记的柴胡遗传多样性与遗传结构分析
宋芸1, 张鑫瑞1, 李政1, 孙哲1, 李澳旋1, 杜晓蓉1, 乔永刚1,2*
1. 山西农业大学生命科学学院, 山西 太谷 030801;
2. 中兽医药现代化山西省重点实验室, 山西 太谷 030801
摘要:
为探究柴胡遗传多样性和居群遗传结构,揭示柴胡的遗传变异情况,本研究利用18对SSR分子标记,对来自山西及周边省份的62个柴胡栽培和野生居群共619个植株进行遗传多样性以及居群遗传结构分析。结果显示:62个柴胡居群均具有较高的遗传多样性,柴胡野生居群的遗传多样性高于栽培居群,AMOVA分析表明柴胡居群内遗传变异大于居群间的变异。主坐标分析将柴胡居群分为3类,第一类为来自山西各地的野生柴胡居群,第二类由来自山西、河北、陕西、辽宁的栽培柴胡居群组成,第三类由来自山西和甘肃的34个栽培柴胡居群组成。STRUCTURE软件居群遗传结构分析预测62个柴胡居群的最佳分组数为2组,第一组组成与主坐标分析中分类为第三类的居群相同,第二组则包括有主坐标分析中划分为第一类和第二类的居群。主坐标分析、居群遗传结构分析以及NJ树聚类均将野生柴胡居群聚为一类,使其与栽培居群区分开来。本研究为柴胡的种质资源利用、遗传变异研究以及柴胡优质种质资源开发提供理论依据。
关键词:    柴胡      SSR      遗传多样性      遗传结构     
Genetic diversity and genetic structure analysis of Bupleurum chinense DC. based on SSR molecular marker
SONG Yun1, ZHANG Xin-rui1, LI Zheng1, SUN Zhe1, LI Ao-xuan1, DU Xiao-rong1, QIAO Yong-gang1,2*
1. College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China;
2. Shanxi Key Lab for Modernization of TCVM, Taigu 030801, China
Abstract:
In order to explore the genetic diversity and structure of Bupleurum chinense, we used 18 pairs of SSR molecular markers to analyze the genetic diversity of 619 individuals in 62 cultivated and wild populations of Bupleurum chinense from Shanxi and the surrounding provinces. The results show that the 62 Bupleurum chinense populations have high genetic diversity, with that of the wild Bupleurum chinense populations greater than that of cultivated populations. AMOVA analysis indicated that genetic variation within populations was greater than between populations. Principal coordinate analysis (PCoA) divided the Bupleurum chinense populations into 3 groups, the first group containing wild Bupleurum chinense populations from all parts of Shanxi, the second group consisting of cultivated Bupleurum chinense populations from Shanxi, Hebei, Shaanxi and Liaoning, and the third group consisting of cultivated Bupleurum chinense from Shanxi and Gansu. STRUCTURE software cluster genetic structure analysis grouped the 62 Bupleurum chinense into two populations:the first group composition was the same as the population classified as the third category in the PCoA analysis, while the second group includes the populations from the first and second categories of the PCoA. PCoA, cluster genetic structure analysis, and NJ tree cluster all gather wild Bupleurum chinense population into a single category, distinguishing it from the cultivated populations. This study provides a theoretical basis for the utilization of germplasm resources, genetic variation and the development of quality germplasm resources for Bupleurum chinense.
Key words:    Bupleurum chinense    SSR    genetic diversity    genetic structure   
收稿日期: 2021-10-14
DOI: 10.16438/j.0513-4870.2021-1479
基金项目: 国家重点研发计划(2019YFC1710801);山西省现代农业产业技术体系建设专项资金.
通讯作者: 乔永刚,Tel:13935491202,E-mail:sxndqyg@126.com
Email: sxndqyg@126.com
相关功能
PDF(3723KB) Free
打印本文
0
作者相关文章
宋芸  在本刊中的所有文章
张鑫瑞  在本刊中的所有文章
李政  在本刊中的所有文章
孙哲  在本刊中的所有文章
李澳旋  在本刊中的所有文章
杜晓蓉  在本刊中的所有文章
乔永刚  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China:Vol I (中华人民共和国药典:一部)[S]. Beijing:China Medical Science Press, 2020:293.
[2] He TN. Gentianaceae in Flora Reipublicae Popularis Sinicae:Vol 55(中国植物志:55卷)[M]. Beijing:Science Press, 1983.
[3] Zhang GX, Wang H, Liu Y, et al. Survey and analysis of cultivated Bupleurum spp. germplasm resources in China[J]. Mod Chin Med (中国现代中药), 2021, 23:772-780, 799.
[4] Li Q, Su X, Ma H, et al. Development of genic SSR marker resources from RNA-seq data in Camellia japonica and their application in the genus Camellia[J]. Sci Rep, 2021, 11:9919.
[5] Ge SY, Meng YJ, Li GM, et al. Research progress on genetic diversity in Chinese medicinal plants[J]. Chin Tradit Herb Drugs (中草药), 2006, 10:1584-1589.
[6] Grover A, Sharma PC. Development and use of molecular markers:past and present[J]. Crit Rev Biotechnol, 2016, 36:290-302.
[7] Jena RC, Chand PK. Multiple DNA marker assisted diversity analysis of Indian mango (Mangifera indica L.) populations[J]. Sci Rep, 2021, 11:10345.
[8] Roncallo PF, Beaufort V, Larsen AO, et al. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection[J]. PLoS One, 2019, 14:e0218562.
[9] Wang H, Yang B, Wang H, et al. Impact of different numbers of microsatellite markers on population genetic results using SLAF-seq data for Rhododendron species[J]. Sci Rep, 2021, 11:8597.
[10] Yan W, Li J, Zheng D, et al. Analysis of genetic population structure and diversity in Mallotus oblongifolius using ISSR and SRAP markers[J]. Peer J, 2019, 7:e7173.
[11] Luo H, Wang X, Zhan G, et al. Genome-wide analysis of simple sequence repeats and efficient development of polymorphic SSR markers based on whole genome re-sequencing of multiple isolates of the wheat stripe rust fungus[J]. PLoS One, 2015, 10:e0130362.
[12] Kumar C, Kumar R, Singh SK, et al. Development of novel g-SSR markers in guava (Psidium guajava L.) cv. Allahabad Safeda and their application in genetic diversity, population structure and cross species transferability studies[J]. PLoS One, 2020, 15:e0237538.
[13] Song F, Lu JH, Han C, et al. Comparison between SCoT and EST-SSR markers in detection of genetic diversity of wild Glycyrrhiza L. species[J]. J Shihezi Univ (Nat Sci) (石河子大学学报:自然科学版), 2017, 35:213-219.
[14] Cao LY, Gu C, Sun HF, et al. Evaluation of genetic diversity and structure of some medicinal plants of Codonopsis based on SSR markers[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2018, 24:45-52.
[15] Liu YL, Geng YP, Xie XD, et al. Genetic diversity and genetic structure analysis of Astragalus based on SSR molecular marker[J]. Acta Agrest Sin (草地学报), 2019, 27:1154-1162.
[16] Li S, Ji F, Hou F, et al. Characterization of Hemerocallis citrina transcriptome and development of EST-SSR markers for evaluation of genetic diversity and population structure of Hemerocallis collection[J]. Front Plant Sci, 2020, 11:686.
[17] Shahzadi I, Ahmed R, Hassan A, et al. Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis[J]. Genet Mol Res, 2010, 9:386-393.
[18] Zhan QQ, Sui C, Wei JH, et al. Construction of genetic linkage map of Bupleurum chinense DC. using ISSR and SSR markers[J]. Acta Pharm Sin (药学学报), 2010, 45:517-523.
[19] Wu SR, Gao K, Zhao LZ, et al. Studies on identification of Bupleurum cultivated germplasm using SSR molecular markers[J]. Mod Tradit Chin Med Mater Med-World Sci Technol (世界科学技术-中医药现代化), 2015,17:1806-1812.
[20] Chu CR, Xu J, Du ML, et al. Genome survey analysis and SSR loci mining of Bupleurum falcatum[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:3960-3966.
[21] Chatterji S, Pachter L. Reference based annotation with GeneMapper[J]. Genome Biol, 2006, 7:R29.
[22] Peakall R, Smouse PE. GenAlEx6.5:genetic analysis in Excel. Population genetic software for teaching and research an update[J]. Bioinformatics, 2012, 28:2537-2539.
[23] Liu KJ, Muse SV. PowerMarker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21:2128-2129.
[24] Kumar S, Stecher G, Li M, et al MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35:1547-1549.
[25] Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4:406-425.
[26] Evanno G, Regnaut S, Goudet J. Detexting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14:2611-2620.
[27] Earl DA, Vonholdt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conserv Genet Resour, 2012, 4:359-361.
[28] Li XH, Wang KJ. Research progress of genetic diversity in wild soybean (Glycine soja Siebold & Zucc.)[J]. J Plant Genet Resour (植物遗传资源学报), 2020, 21:1344-1356.
[29] Ellegren H, Galtier N. Determinants of genetic diversity[J]. Nat Rev Genet, 2016, 17:422-433.
[30] Guo B, Hao X, Han L, et al. Unraveling the genetic diversity and structure of Quercus liaotungensis population through analysis of microsatellite markers[J]. Peer J, 2021, 9:e10922.
[31] Hayward AC, Tollenaere R, Dalton-Morgan J, et al. Molecular marker applications in plants[J]. Methods Mol Biol, 2015, 1245:13-27.
[32] Song MF, Guan YH, Zhang Y, et al. Genetic diversity assessment of a Chinese medicinal endemic species, Aspidopterys obcordata var. obcordata, by combined molecular marker methods (ISSR & SRAP)[J]. Biochem Genet, 2021, 59:283-299.
[33] Zhu Q, Deng X, Zhang SB, et al. Genetic diversity of 6 species in Polygonatum by SSR marker[J]. China J Chin Mater Med (中国中药杂志), 2018, 43:2935-2943.
[34] Sharma P, Mehta G, Sharma S, et al. Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding[J]. Mol Biol Rep, 2021, 48:381-393.
[35] Essid A, Aljane F, Neily MH, et al. Assessment of genetic diversity of thirty Tunisian fig (Ficus carica L.) accessions using pomological traits and SSR markers[J]. Mol Biol Rep, 2021, 48:335-346.
相关文献:
1.励娜, 姚媛媛, 陈一龙, 梁旭明, 郑丁丁, 张小梅, 杨大坚.基于SSR标记的雷公藤属植物遗传多样性和遗传结构评价[J]. 药学学报, 2017,52(1): 153-161
2.战晴晴 隋 春 魏建和 范圣此 张 杰.利用ISSR和SSR分子标记构建北柴胡遗传图谱[J]. 药学学报, 2010,45(4): 517-523