药学学报, 2022, 57(4): 1203-1215
引用本文:
怀浩, 董林林, 宁康, 侯聪, 代飞, 刘霞, 汪鋆植, 陈士林. 中药火麻仁基原植物Hsp20基因家族鉴定及表达分析[J]. 药学学报, 2022, 57(4): 1203-1215.
HUAI Hao, DONG Lin-lin, NING Kang, HOU Cong, DAI Fei, LIU Xia, WANG Jun-zhi, CHEN Shi-lin. Genome-wide identification of the Hsp20 gene family in Cannabis sativa and its expression profile[J]. Acta Pharmaceutica Sinica, 2022, 57(4): 1203-1215.

中药火麻仁基原植物Hsp20基因家族鉴定及表达分析
怀浩1,2, 董林林2, 宁康2, 侯聪2,4, 代飞3, 刘霞4, 汪鋆植1, 陈士林2*
1. 三峡大学生物与制药学院, 湖北 宜昌 443002;
2. 中国中医科学院中药研究所, 北京 100700;
3. 云南大麻产业投资有限公司, 云南 昆明 650217;
4. 武汉理工大学化学化工与生命科学学院, 湖北 武汉 430070
摘要:
Hsp20 (heat shock protein 20)基因家族在植物生长发育和胁迫响应中发挥着重要的作用。为探究大麻(Cannabis sativa L.Hsp20CsHsp20)基因的功能,本研究在全基因组和转录组水平上采用生物信息学手段对CsHsp20基因家族进行系统性研究。结果表明,在大麻中鉴定到35个CsHsp20基因家族成员(CsHsp20-1~CsHsp20-35),分布在9条染色体上,属于10个亚家族,同一亚家族成员之间蛋白基序分布相似。多种激素和胁迫响应顺式作用元件存在于CsHsp20基因的启动子区,表明其可参与植物的生长发育和多种胁迫响应。蛋白互作分析表明CsHsp20蛋白与Hsp家族其他成员之间存在互作关系且受转录因子Hop和HSFA2的调控。转录组数据表明在大麻的不同组织器官及不同发育时期中CsHsp20基因家族成员表达水平存在差异,主要在火麻仁及其成熟期高表达,表明CsHsp20家族成员可调控火麻仁的生长发育。本研究为CsHsp20基因家族功能研究和火麻仁基原植物的定向培育奠定了基础。
关键词:    火麻仁      大麻      Hsp20基因家族      生长发育      表达模式     
Genome-wide identification of the Hsp20 gene family in Cannabis sativa and its expression profile
HUAI Hao1,2, DONG Lin-lin2, NING Kang2, HOU Cong2,4, DAI Fei3, LIU Xia4, WANG Jun-zhi1, CHEN Shi-lin2*
1. College of Biological &Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China;
2. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
3. Yunnan Hemp Industrial Investment Co. Ltd., Kunming 650217, China;
4. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
Abstract:
Theheat shock protein 20(Hsp20) gene family plays an important role in regulating the stress response and plant development. The characteristics of Hsp20 in Cannabis sativa (CsHsp20), however, are still unclear. We systematically analyzed the CsHsp20 family based on the whole-genome and transcriptome database of Cannabis sativa using a series of bioinformatical tools. A total of 35 CsHsp20 genes (CsHsp20-1-CsHsp20-35) were identified in Cannabis sativa; they distribute onto 9 chromosomes and belong to 10 subfamilies, each with similar protein motifs. The promoter region of the CsHsp20 genes contains a variety of hormone-responsive and stress-responsive cis-elements, indicating that CsHsp20 genes are involved in plant growth and development and various stress responses. Protein interaction analysis showed that CsHsp20 proteins interacted with other members of the Hsp family and were regulated by transcription factors Hop and HSFA2. Transcriptome data showed that the expression levels of CsHsp20 genes were different among different tissues of Cannabis sativa and across different developmental stages. CsHsp20 genes were highly expressed mainly in hemp seed and its maturation stage, suggesting that CsHsp20 gene family members regulate the growth and development of hemp seed. Our research lays a foundation for the studying the function of CsHsp20 gene family and the directional cultivation of high-quality non-psychoactive medicinal cannabis.
Key words:    hemp seed    Cannabis sativa    Hsp20 gene family    development    expression profile   
收稿日期: 2021-10-19
DOI: 10.16438/j.0513-4870.2021-1509
基金项目: 国家中医药管理局中药产品海外注册现状调查研究项目(GZYYGJ2020013);云南省重大专项高品质工业大麻品种培育及开发研究(H2021038).
通讯作者: 陈士林,E-mail:slchen@icmm.ac.cn
Email: slchen@icmm.ac.cn
相关功能
PDF(9228KB) Free
打印本文
0
作者相关文章
怀浩  在本刊中的所有文章
董林林  在本刊中的所有文章
宁康  在本刊中的所有文章
侯聪  在本刊中的所有文章
代飞  在本刊中的所有文章
刘霞  在本刊中的所有文章
汪鋆植  在本刊中的所有文章
陈士林  在本刊中的所有文章

参考文献:
[1] Fan K, Pan XF, Mao ZJ, et al. Identification and analysis of sHSP gene family in Gossypioides kirkii[J]. Acta Agron Sin (作物学报), 2021, 47:1913-1926.
[2] Waters ER. The evolution, function, structure, and expression of the plant sHSPs[J]. J Exp Bot, 2013, 64:391-403.
[3] Mogk A, Bukau B. Role of sHsps in organizing cytosolic protein aggregation and disaggregation[J]. Cell Stress Chaperones, 2017, 22:493-502.
[4] Zhao X, Zhang TT, Xing WT, et al. Genome-wide identification and expression analysis under temperature stress of HSP70 gene family in Dendrobium catenatum[J]. Acta Hort Sin (园艺学报), 2021, 48:1743-1754.
[5] Sung DY, Kaplan F, Lee KJ, et al. Acquired tolerance to temperature extremes[J]. Trends Plant Sci, 2003, 8:179-187.
[6] Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein[J]. Plant Physiol, 2000, 122:189-198.
[7] Zhao P, Wang D, Wang R, et al. Genome-wide analysis of the potato Hsp20 gene family:identification, genomic organization and expression profiles in response to heat stress[J]. BMC Genomics, 2018, 19:61.
[8] Haslbeck M, Vierling E. A first line of stress defense:small heat shock proteins and their function in protein homeostasis[J]. J Mol Biol, 2015, 427:1537-1548.
[9] Chen J, Gao T, Wan S, et al. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis)[J]. Int J Mol Sci, 2018, 19:2633.
[10] Waters ER, Vierling E. Plant small heat shock proteins-evolutionary and functional diversity[J]. New Phytol, 2020, 227:24-37.
[11] Kirschner M, Winkelhaus S, Thierfelder JM, et al. Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts[J]. Plant J, 2000, 24:397-411.
[12] Giese KC, Vierling E. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression[J]. J Biol Chem, 2004, 279:32674-32683.
[13] Basha E, Friedrich KL, Vierling E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity[J]. J Biol Chem, 2006, 281:39943-39952.
[14] Jaya N, Garcia V, Vierling E. Substrate binding site flexibility of the small heat shock protein molecular chaperones[J]. Proc Natl Acad Sci U S A, 2009, 106:15604-15609.
[15] Bondino HG, Valle EM, Ten HA. Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants[J]. Planta, 2012, 235:1299-1313.
[16] Cui F, Taier G, Wang X, et al. Genome-wide analysis of the HSP20 gene family and expression patterns of HSP20 genes in response to abiotic stresses in Cynodon transvaalensis[J]. Front Genet, 2021, 12:732812.
[17] Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)[J]. Cell Stress Chaperones, 2001, 6:225-237.
[18] Ouyang Y, Chen J, Xie W, et al. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice[J]. Plant Mol Biol, 2009, 70:341-357.
[19] Lopes-Caitar VS, de Carvalho MCCG, Darben LM, et al. Genome-wide analysis of the Hsp20 gene family in soybean:comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses[J]. BMC Genomics, 2013, 14:577.
[20] Guo M, Liu JH, Lu JP, et al. Genome-wide analysis of the CaHsp20 gene family in pepper:comprehensive sequence and expression profile analysis under heat stress[J]. Front Plant Sci, 2015, 6:806.
[21] Yu J, Cheng Y, Feng K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J]. Front Plant Sci, 2016, 7:1215.
[22] Jung YJ, Nou IS, Kang KK. Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice[J]. Plant Breed Biotech, 2014, 2:370-379.
[23] Li ZY, Long RC, Zhang TJ, et al. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L.[J]. Mol Biol Rep, 2016, 43:815-826.
[24] Ji XR, Yu YH, Ni PY, et al. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development[J]. BMC Plant Biol, 2019, 19:433.
[25] Dafny-Yelin M, Tzfira T, Vainstein A, et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant Mol Biol, 2008, 67:363-373.
[26] Chauhan H, Khurana N, Nijhavan A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant Cell Environ, 2012, 35:1912-1931.
[27] Bonini SA, Premoli M, Tambaro S, et al. Cannabis sativa:a comprehensive ethnopharmacological review of a medicinal plant with a long history[J]. J Ethonpharmacol, 2018, 227:300-315.
[28] Zhang JQ, Chen SL, Wei GF, et al. Cultivars breeding and production of non-psychoactive medicinal cannabis with high CBD content[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:4772-4780.
[29] Burstein S. Cannabidiol (CBD) and its analogs:a review of their effects on inflammation[J]. Bioorg Med Chem, 2015, 23:1377-1385.
[30] Wu J, Yu HB. Recent advances in understanding the roles and molecular mechanisms of cannabidiol in neuropsychiatric disorders[J]. Acta Pharm Sin (药学学报), 2020, 55:2800-2810.
[31] Wei F, Tu DP, Wang LP. Research progress in edible development and pharmacological action of hemp seed[J]. Chin J Gerontol (中国老年学杂志), 2015, 35:3486-3488.
[32] Farinon B, Molinari R, Costantini L, et al. The seed of industrial hemp (Cannabis sativa L.):nutritional quality and potential functionality for human health and nutrition[J]. Nutrients, 2020, 12:1935.
[33] Hurgobin B, Tamiru-Oli M, Welling MT, et al. Recent advances in Cannabis sativa genomics research[J]. New Phytol, 2021, 230:73-89.
[34] Holub EB. The arms race is ancient history in Arabidopsis, the wildflower[J]. Nat Rev Genet, 2001, 2:516-527.
[35] Sarkar NK, Kim YK, Grover A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. BMC Genomics, 2009, 10:393.
[36] Mattick JS, Gagen MJ. The evolution of controlled multitasked gene networks:the role of introns and other noncoding RNAs in the development of complex organisms[J]. Mol Biol Evol, 2001, 18:1611-1630.
[37] Ren XY, Vorst O, Fiers MW, et al. In plants, highly expressed genes are the least compact[J]. Trends Genet, 2006, 22:528-532.
[38] Chung BY, Simons C, Firth AE, et al. Effect of 5'UTR introns on gene expression in Arabidopsis thaliana[J]. BMC Genomics, 2006, 7:120.
[39] Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor[J]. Trends Genet, 2008, 24:375-378.
[40] Vision TJ, Brown DG, Tanksley SD. The origins of genomic duplications in Arabidopsis[J]. Science, 2000, 290:2114-2117.
[41] Siddique M, Gernhard S, von Koskull-Döring P, et al. The plant sHSP superfamily:five new members in Arabidopsis thaliana with unexpected properties[J]. Cell Stress Chaperones, 2008, 13:183-197.
[42] Muthusamy SK, Dalal M, Chinnusamy V, et al. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat[J]. J Plant Physiol, 2017, 211:100-113.
[43] Liu H, Charng Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development[J]. Plant Physiol, 2013, 163:276-290.
[44] Hahn A, Bublak D, Schleiff E, et al. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato[J]. Plant Cell, 2011, 23:741-755.