药学学报, 2022, 57(5): 1252-1262
引用本文:
郭弘, 李霞, 瞿鼎, 陈彦. Fe基金属-有机框架在抗肿瘤药物递送方面的研究进展[J]. 药学学报, 2022, 57(5): 1252-1262.
GUO Hong, LI Xia, QU Ding, CHEN Yan. Research progress on Fe-based metal-organic frameworks in antitumor drug delivery[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1252-1262.

Fe基金属-有机框架在抗肿瘤药物递送方面的研究进展
郭弘1,2, 李霞1,2, 瞿鼎1,2, 陈彦1,2*
1. 南京中医药大学附属中西医结合医院, 江苏 南京 210028;
2. 江苏省中医药研究院中药组分与微生态研究中心, 江苏 南京 210028
摘要:
Fe基金属-有机框架(metal-organic frameworks,MOFs)是一类由Fe离子或Fe团簇,通过配位键与有机配体结合而成的聚合物晶体,主要可通过溶剂热合成法、超声合成法、微波合成法、干凝胶转化法等进行制备,兼具无机纳米载体载药能力强和有机纳米载体安全性高的特点,并具有良好的肿瘤靶向性和辅助诱导肿瘤铁死亡的能力,在抗肿瘤药物递送方面拥有极高的潜力。近年来,Fe基MOFs还被研发出成像、磁热、光热、光动及药物响应释放等多种功能,可在递送抗肿瘤药物的同时辅助疾病诊断和监控药物分布,联合热疗、光疗等产生协同抗肿瘤效果,并控制药物的精准释放。本文对Fe基MOFs的合成方法、特点以及功能和类型等方面的研究进展进行了综述,为Fe基MOFs在抗肿瘤药物递送方面进一步应用提供依据。
关键词:    Fe基金属-有机框架      抗肿瘤      药物递送      纳米      靶向     
Research progress on Fe-based metal-organic frameworks in antitumor drug delivery
GUO Hong1,2, LI Xia1,2, QU Ding1,2, CHEN Yan1,2*
1. Affiliated Hospital of Intergrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China;
2. Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, China
Abstract:
Fe-based metal-organic frameworks (MOFs) are a class of polymer crystals formed by the combination of Fe ions or Fe clusters with organic ligands through coordination bonds. At present, Fe-based MOFs can be mainly prepared by solvothermal synthesis, ultrasonic synthesis, microwave synthesis, and dry-gel conversion, etc. Fe-based MOFs have the characteristics of strong drug loading capacity of inorganic nano-carrier and high safety of organic nano-carrier, and have good tumor targeting and the capacity of inducting tumor's ferroptosis, which have high potential in the delivery of antitumor drugs. Recently, Fe-based MOFs have also been developed with various functions such as imaging, magnetic hyperthermia, photothermal therapy, photodynamic therapy, and intelligent response, which can facilitate diagnosis and monitor drug distribution while delivering antitumor drugs, and can produce synergistic antitumor effects combined with thermotherapy and phototherapy, and can also control the precise release of drugs. Reviewing the advances in the synthesis methods, characteristics as well as functions and types of Fe-based MOFs can provide a basis for the further applications of Fe-based MOFs in antitumor drug delivery.
Key words:    Fe-based metal-organic framework    antitumor    drug delivery    nano    targeting   
收稿日期: 2021-08-31
DOI: 10.16438/j.0513-4870.2021-1263
基金项目: 国家自然科学基金资助项目(82173985).
通讯作者: 陈彦,Tel:86-25-52362155,E-mail:ychen202@hotmail.com
Email: ychen202@hotmail.com
相关功能
PDF(650KB) Free
打印本文
0
作者相关文章
郭弘  在本刊中的所有文章
李霞  在本刊中的所有文章
瞿鼎  在本刊中的所有文章
陈彦  在本刊中的所有文章

参考文献:
[1] Xia Q, Wang H, Huang B, et al. State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications[J]. Small, 2019, 15:e1803088.
[2] Ma L, Jiang F, Fan X, et al. Metal-organic-framework-engineered enzyme-mimetic catalysts[J]. Adv Mater, 2020, 32:e2003065.
[3] Zhou Y, Niu B, Wu B, et al. A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility[J]. Acta Pharm Sin B, 2020, 10:2404-2416.
[4] Wan X, Song L, Pan W, et al. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy[J]. ACS Nano, 2020, 14:11017-11028.
[5] Lu Z, Liu J, Zhang X, et al. Node-accessible zirconium MOFs[J]. J Am Chem Soc, 2020, 142:21110-21121.
[6] Gu ZY, Yang CX, Chang N, et al. Metal-organic frameworks for analytical chemistry:from sample collection to chromatographic separation[J]. Acc Chem Res, 2012, 45:734-745.
[7] Wang Y, Wu W, Liu J, et al. Cancer-cell-activated photodynamic therapy assisted by Cu(II)-based metal-organic framework[J]. ACS Nano, 2019, 13:6879-6890.
[8] Wang Y, Jia X, Yang H, et al. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2[J]. Angew Chem Int Ed Engl, 2020, 59:19027-19030.
[9] Pham H, Ramos K, Sua A, et al. Tuning crystal structures of iron-based metal-organic frameworks for drug delivery applications[J]. ACS Omega, 2020, 5:3418-3427.
[10] Wyszogrodzka G, Dorożyński P, Gil B, et al. Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy[J]. Pharm Res, 2018, 35:144.
[11] Liu X, Liang T, Zhang R, et al. Iron-based metal-organic frameworks in drug delivery and biomedicine[J]. ACS Appl Mater Interfaces, 2021, 13:9643-9655.
[12] Chen Q, Xu M, Zheng W, et al. Se/Ru-decorated porous metal-organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells[J]. ACS Appl Mater Interfaces, 2017, 9:6712-6724.
[13] Gordon J, Kazemian H, Rohani S. MIL-53(Fe), MIL-101, and SBA-15 porous materials:potential platforms for drug delivery[J]. Mater Sci Eng C Mater Biol Appl, 2015, 47:172-179.
[14] Dong WF, Liu X, Shi WB, et al. Metal-organic framework MIL-53(Fe):facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing[J]. RSC Adv, 2015, 5:17451-17457.
[15] Ma MY, Bétard A, Weber I, et al. Iron-based metal-organic frameworks MIL-88B and NH2‑MIL-88B:high quality microwave synthesis and solvent-induced lattice "breathing"[J]. Cryst Growth Des, 2013, 13:2286-2291.
[16] Imteaz AJJ, Nazmul AK, Sung HJ. Synthesis of a metal-organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt[J]. Cryst Growth Des, 2012, 12:5878-5881.
[17] Al Haydar M, Abid HR, Sunderland B, et al. Metal organic frameworks as a drug delivery system for flurbiprofen[J]. Drug Des Devel Ther, 2017, 11:2685-2695.
[18] Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. J Am Chem Soc, 2008, 130:6774-6780.
[19] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat Mater, 2010, 9:172-178.
[20] Leng X, Dong X, Wang W, et al. Biocompatible Fe-based micropore metal-organic frameworks as sustained-release anticancer drug carriers[J]. Molecules, 2018, 23:2490.
[21] Gao X, Zhai M, Guan W, et al. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery[J]. ACS Appl Mater Interfaces, 2017, 9:3455-3462.
[22] Bernhard I, Stefan W, Hanna E. Liposome-coated iron fumarate metal-organic framework nanoparticles for combination therapy[J]. Nanomaterials (Basel), 2017, 7:351.
[23] Qiao C, Zhang R, Wang Y, et al. Rabies virus-inspired metal-organic frameworks (MOFs) for targeted imaging and chemotherapy of glioma[J]. Angew Chem Int Ed Engl, 2020, 59:16982-16988.
[24] Yang J, Ma S, Xu R, et al. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy[J]. J Control Release, 2021, 334:21-33.
[25] Rezaei M, Abbasi A, Varshochian R, et al. NanoMIL-100(Fe) containing docetaxel for breast cancer therapy[J]. Artif Cells Nanomed Biotechnol, 2018, 46:1390-1401.
[26] Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9:2040-2051.
[27] Zhou Y, Liu L, Cao Y, et al. A nanocomposite vehicle based on metal-organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery[J]. ACS Appl Mater Interfaces, 2020, 12:22581-22592.
[28] Simon MA, Anggraeni E, Soetaredjo FE, et al. Hydrothermal synthesize of HF-free MIL-100(Fe) for isoniazid-drug delivery[J]. Sci Rep, 2019, 9:16907.
[29] Gandara-Loe J, Ortuño-Lizarán I, Fernández-Sanchez L, et al. Metal-organic frameworks as drug delivery platforms for ocular therapeutics[J]. ACS Appl Mater Interfaces, 2019, 11:1924-1931.
[30] Taherzade SD, Rojas S, Soleimannejad J, et al. Combined cutaneous therapy using biocompatible metal-organic frameworks[J]. Nanomaterials (Basel), 2020, 10:2296.
[31] Wang C, Jia X, Zhen W, et al. Small-sized MOF-constructed multifunctional diagnosis and therapy platform for tumor[J]. ACS Biomater Sci Eng, 2019, 5:4435-4441.
[32] Yao YR, Jin YJ, Jia X, et al. Construction of hyaluronic acid-covered hierarchically porous MIL-nanoMOF for loading and controlled release of doxorubicin[J]. Chemistry, 2021, 27:2987-2992.
[33] Gao X, Cui R, Song L, et al. Hollow structural metal-organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging[J]. Dalton Trans, 2019, 48:17291-17297.
[34] Hu Q, Yu J, Liu M, et al. A low cytotoxic cationic metal-organic framework carrier for controllable drug release[J]. J Med Chem, 2014, 57:5679-5685.
[35] Ibrahim M, Sabouni R, Husseini GA, et al. Facile ultrasound-triggered release of calcein and doxorubicin from iron-based metal-organic frameworks[J]. J Biomed Nanotechnol, 2020, 16:1359-1369.
[36] Wu MX, Yang YW. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J]. Adv Mater, 2017, 29:1606134.
[37] Pham MH, Vuong GT, Vu AT, et al. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals[J]. Langmuir, 2011, 27:15261-15267.
[38] Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, et al. pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment[J]. Carbohydr Polym, 2021, 262:117907.
[39] Li G, Song S, Zhang T, et al. pH-sensitive polyelectrolyte complex micelles assembled from CS-g-PNIPAM and ALG-g-P(NIPAM-co-NVP) for drug delivery[J]. Int J Biol Macromol, 2013, 62:203-210.
[40] Isoglu IA, Ozsoy Y, Isoglu SD. Advances in micelle-based drug delivery:cross-linked systems[J]. Curr Top Med Chem, 2017, 17:1469-1489.
[41] Schneemann A, Bon V, Schwedler I, et al. Flexible metal-organic frameworks[J]. Chem Soc Rev, 2014, 43:6062-6096.
[42] Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer:drug nanocarriers, the future of chemotherapy[J]. Eur J Pharm Biopharm, 2015, 93:52-79.
[43] Tsujimoto A, Uehara H, Yoshida H, et al. Different hydration states and passive tumor targeting ability of polyethylene glycol-modified dendrimers with high and low PEG density[J]. Mater Sci Eng C Mater Biol Appl, 2021, 126:112159.
[44] Das RP, Singh BG, Kunwar A. Preparation of a size selective nanocomposite through temperature assisted co-assembly of gelatin and pluronic F127 for passive targeting of doxorubicin[J]. Biomater Sci, 2020, 8:4251-4265.
[45] Sebak AA, El-Shenawy BM, El-Safy S, et al. From passive targeting to personalized nanomedicine:multidimensional insights on nanoparticles' interaction with the tumor microenvironment[J]. Curr Pharm Biotechnol, 2021, 22:1444-1465.
[46] Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR:strategies to enhance patient responses[J]. Adv Drug Deliv Rev, 2018, 130:17-38.
[47] Liu R, Xiao W, Hu C, et al. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis[J]. J Control Release, 2018, 278:127-139.
[48] Ma JB, Shen JM, Yue T, et al. Size-shrinkable and protein kinase Cα-recognizable nanoparticles for deep tumor penetration and cellular internalization[J]. Eur J Pharm Sci, 2021, 159:105693.
[49] Cui R, Zhao P, Yan Y, et al. Outstanding drug-loading/release capacity of hollow Fe-metal-organic framework-based microcapsules:a potential multifunctional drug-delivery platform[J]. Inorg Chem, 2021, 60:1664-1671.
[50] Daneman R, Prat A. The blood-brain barrier[J]. Cold Spring Harb Perspect Biol, 2015, 7:a020412.
[51] Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery:applications and characteristics[J]. Expert Opin Drug Deliv, 2019, 16:69-78.
[52] Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery[J]. J Drug Target, 2016, 24:179-191.
[53] Zhang Y, Cao J, Yuan Z. Strategies and challenges to improve the performance of tumor-associated active targeting[J]. J Mater Chem B, 2020, 8:3959-3971.
[54] Zhou Z, Shen Z, Chen X. Tale of two magnets:an advanced magnetic targeting system[J]. ACS Nano, 2020, 14:7-11.
[55] FDA. Approved drug products with therapeutic equivalence evaluations 41st edition (orange book)[EB/OL]. Silver Spring:FDA, 2021[2021-8-30]. https://www.fda.gov/media/71474/download.
[56] FDA. Approved drug products with therapeutic equivalence evaluations March 20, 2020 edition[EB/OL]. Silver Spring:FDA, 2020[2021-8-30]. https://www.fda.gov/media/136324/download.
[57] Yang Y, Xia F, Yang Y, et al. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect[J]. J Mater Chem B, 2017, 5:8600-8606.
[58] Mukherjee A, Waters AK, Kalyan P, et al. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform:state of the art, emerging technologies, and perspectives[J]. Int J Nanomedicine, 2019, 14:1937-1952.
[59] Mei X. Principles and Methods of Nanotoxicology (纳米毒理学原理与方法)[M]. Beijing:Science Press, 2019.
[60] Wang HS, Ding Y. Recent advances of metal-organic frameworks applied in biomedicine[J]. Acta Pharm Sin (药学学报), 2020, 55:1511-1519.
[61] Baati T, Njim L, Neffati F, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal-organic frameworks[J]. Chem Sci, 2013, 4:1597-1607.
[62] Kumar P, Anand B, Tsang YF, et al. Regeneration, degradation, and toxicity effect of MOFs:opportunities and challenges[J]. Environ Res, 2019, 176:108488.
[63] Tamames-Tabar C, Cunha D, Imbuluzqueta E, et al. Cytotoxicity of nanoscaled metal-organic frameworks[J]. J Mater Chem B, 2014, 2:262-271.
[64] Zimmermann MB, Hurrell RF. Nutritional iron deficiency[J]. Lancet, 2007, 370:511-520.
[65] Ploetz E, Zimpel A, Cauda V, et al. Metal-organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH[J]. Adv Mater, 2020, 32:e1907267.
[66] Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine[J]. Chem Rev, 2012, 112:1232-1268.
[67] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149:1060-1072.
[68] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35:830-849.
[69] Su Z, Yang Z, Xie L, et al. Cancer therapy in the necroptosis era[J]. Cell Death Differ, 2016, 23:748-756.
[70] Li CQ, Tang HX, Zhang Y, et al. Advance in construction of ferroptosis-inducing nanomedicine for cancer therapy[J]. Acta Pharm Sin (药学学报), 2020, 55:2099-2109.
[71] Xu R, Yang J, Qian Y, et al. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF[J]. Nanoscale Horiz, 2021, 6:348-356.
[72] Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications[J]. Int J Nanomedicine, 2017, 12:5421-5431.
[73] Abelha TF, Dreiss CA, Green MA, et al. Conjugated polymers as nanoparticle probes for fluorescence and photoacoustic imaging[J]. J Mater Chem B, 2020, 8:592-606.
[74] Jia J, Xu F, Long Z, et al. Metal-organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+[J]. Chem Commun (Camb), 2013, 49:4670-4672.
[75] Xie W, Tian M, Luo X, et al. A dual-mode fluorescent and colorimetric immunoassay based on in situ ascorbic acid-induced signal generation from metal-organic frameworks[J]. Sensors Actuators B Chem, 2020, 302:127180.
[76] Shang W, Zeng C, Du Y, et al. Core-shell gold nanorod@metal-organic framework nanoprobes for multimodality diagnosis of glioma[J]. Adv Mater, 2017, 29:1604381.
[77] Fan Z, Liu H, Xue Y, et al. Reversing cold tumors to hot:an immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy[J]. Bioact Mater, 2021, 6:312-325.
[78] Payne M, Bossmann SH, Basel MT. Direct treatment versus indirect:Thermo-ablative and mild hyperthermia effects[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12:e1638.
[79] Datta NR, Ordóñez SG, Gaipl US, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy:recent advances and promises for the future[J]. Cancer Treat Rev, 2015, 41:742-753.
[80] Lim ZW, Varma VB, Ramanujan RV, et al. Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer[J]. Acta Biomater, 2020, 110:221-230.
[81] Kim J, Kim J, Jeong C, et al. Synergistic nanomedicine by combined gene and photothermal therapy[J]. Adv Drug Deliv Rev, 2016, 98:99-112.
[82] Moy AJ, Tunnell JW. Combinatorial immunotherapy and nanoparticle mediated hyperthermia[J]. Adv Drug Deliv Rev, 2017, 114:175-183.
[83] Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery[J]. Adv Drug Deliv Rev, 2011, 63:789-808.
[84] Zhang YF, Li GL, Gao X, et al. Method for ferrite nanomaterials-mediated cellular magnetic hyperthermia[J]. ACS Biomater Sci Eng, 2020, 6:6652-6660.
[85] Xiang Z, Qi Y, Lu Y, et al. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy:magnetic-triggered synergistic hyperthermia and chemotherapy[J]. J Mater Chem B, 2020, 8:8671-8683.
[86] Zhen X, Cheng P, Pu K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small, 2019, 15:e1804105.
[87] Wang L, Qu X, Zhao Y, et al. Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy[J]. ACS Appl Mater Interfaces, 2019, 11:35228-35237.
[88] He H, Du L, Guo H, et al. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy[J]. Small, 2020, 16:e2001251.
相关文献:
1.江文心, 张华清, 丁杨, 周建平.抗肿瘤多药联用型纳米递送系统的研究进展[J]. 药学学报, 2022,57(1): 1-12
2.苏玉培, 潘昊, 刘丹丹, 王家辉, 丁平田, 潘卫三.基于聚多巴胺特性构建的肿瘤靶向药物递送系统的研究进展[J]. 药学学报, 2022,57(1): 25-35
3.黄领领, 吴宏辉, 许东航, 高建青.细胞膜仿生纳米技术在肿瘤靶向递药系统中的研究进展[J]. 药学学报, 2022,57(1): 85-97
4.卢安, 王向宇, 闫仪, 王坚成*.肿瘤微环境响应型的RNA药物递送系统的研究进展[J]. 药学学报, 2022,57(1): 109-121
5.张淑芬, 曾颖萍, 孟廷廷, 袁弘, 胡富强*.NK细胞的抗肿瘤机制及其在肿瘤靶向治疗中的应用研究进展[J]. 药学学报, 2022,57(1): 122-133
6.王朝辉, 刘玉玲*.抗肿瘤纳米药物的临床转化进展及展望[J]. 药学学报, 2022,57(1): 134-141
7.邢昊楠, 陆梅, 刘瑛琪, 董雨函, 郑爱萍.基于外泌体的抗肿瘤药物靶向递送的研究进展[J]. 药学学报, 2022,57(1): 150-158
8.汪瑜#, 陈钦俊#, 孙涛, 蒋晨*.载奥沙利铂的还原敏感型四氧化三铁纳米粒的体内外靶向性评价[J]. 药学学报, 2022,57(1): 188-199
9.刘军杰#, 许丽华#, 张开翔, 赵秀, 王翼扬, 史进进*, 张振中*.主动渗透型酵母囊泡仿生纳米药物抗肿瘤活性研究[J]. 药学学报, 2022,57(1): 222-232
10.余孝游, 蒋建东*, 王璐璐*.天然来源化合物治疗非酒精性脂肪性肝病研究进展[J]. 药学学报, 2022,57(2): 265-270
11.袁诗俊, 刘永军*, 张娜*.肿瘤相关成纤维细胞治疗策略及其递送系统研究进展[J]. 药学学报, 2022,57(3): 638-643
12.李祺, 王秀, 杜丽娜.外泌体在脑靶向递送中的应用[J]. 药学学报, 2022,57(3): 658-669
13.郑宝鑫, 毕常芬, 侯文彬, 李祎亮.基于线粒体靶向纳米药物递送系统的设计及研究进展[J]. 药学学报, 2022,57(3): 681-694
14.杨玥#, 王海燕#, 孙野#, 孙涛*, 蒋晨.纳米仿生型肿瘤疫苗的研究进展[J]. 药学学报, 2022,57(4): 963-975
15.韩陶, 陈彦, 瞿鼎.天然多糖及其纳米递药系统调控肿瘤微环境的研究进展[J]. 药学学报, 2021,56(12): 3212-3223
16.赖晓雪, 王硕, 闫鑫杨, 刘欣荣, 宋艳志, 邓意辉*.基于血小板的肿瘤靶向治疗策略与反思[J]. 药学学报, 2021,56(4): 1025-1034
17.王施元, 王致红, 李春雨*, 李国辉*.抗肿瘤分子靶向药物相关性腹泻研究进展[J]. 药学学报, 2021,56(12): 3377-3384
18.贾学丽, 刘一婧, 李淼, 杜丽娜, 金义光.基于光动力学疗法抗肿瘤的纳米给药系统[J]. 药学学报, 2021,56(12): 3421-3430
19.刘晓雪, 龚俊波, 魏振平*.纳米晶体技术及其提升水难溶药物药理学功效的研究进展[J]. 药学学报, 2021,56(12): 3431-3440
20.邱晓涵, 李泳江, 吴军勇, 蔡佳歆, 刘季华, 徐文杰, 向大雄.细菌外膜囊泡:疾病治疗的新途径[J]. 药学学报, 2021,56(12): 3441-3450
21.徐焦, 蒙凌华, 卿晨.传统抗肿瘤药物的临床应用现状与发展[J]. 药学学报, 2021,56(6): 1551-1561
22.赵梦, 李思敏, 张蕾, 丛明慧, 胡立宏, 乔宏志.植物来源囊泡及其生物医学应用研究进展[J]. 药学学报, 2021,56(8): 2039-2047
23.李歆, 王义俊, 刘平羽.特异靶向KRAS-G12C突变的抗肿瘤药物研究进展[J]. 药学学报, 2021,56(2): 374-382
24.赵耀, 杨璨羽, 张强, 王学清.肿瘤氧化还原微环境响应型小分子前药纳米粒的代谢与药效研究进展[J]. 药学学报, 2021,56(2): 476-486
25.邓绮虹, 王峥, 邓贤明, 李莉.靶向STAT蛋白的抑制剂在淋巴瘤治疗中的研究进展[J]. 药学学报, 2021,56(3): 703-710
26.郝单丽, 王杰, 谢冉, 岳巧欣, 易红, 臧琛, 赵庆贺, 陈燕军.pH敏感多西紫杉醇纳米胶束的制备及其增强小鼠的抑瘤活性研究[J]. 药学学报, 2020,55(8): 1914-1922
27.邓赛, 张灵敏, 王萍, 李仕颖, 林潮金, 傅小媚, 余细勇.人工外泌体共递送siRNA和蛋白的递送系统的设计及体外评价[J]. 药学学报, 2020,55(1): 139-145
28.张旭, 蒙凌华.源于天然产物或其衍生物的分子靶向抗肿瘤药物研究进展[J]. 药学学报, 2020,55(11): 2491-2500
29.周晓菲, 李睿, 姚红娟, 李亮.ACK1小分子抑制剂的研究进展[J]. 药学学报, 2020,55(5): 821-831
30.高丽娜, 乔宏志, 胡立宏.强心苷抗肿瘤制剂的研究进展[J]. 药学学报, 2020,55(7): 1528-1539
31.叶圣洁, 胡凯莉.外泌体作为药物递送载体在脑部疾病治疗中的研究进展[J]. 药学学报, 2020,55(7): 1540-1548
32.赵欢乐, 梁菊, 吴文澜, 李军波.酸敏感多肽在药物递送方面的作用机制及其应用[J]. 药学学报, 2019,54(3): 440-447
33.黄梦瑶, 杨旭, 邢金峰, 魏振平.纳米级脑靶向递药系统的靶向性提升策略[J]. 药学学报, 2019,54(4): 629-637
34.张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟.外泌体作为药物递送载体的研究进展[J]. 药学学报, 2019,54(6): 1010-1016
35.王亚婷, 张振华, 冯倩华, 蔺萌.基于中空介孔硫化铜的多功能纳米递药系统的构建及初步研究[J]. 药学学报, 2019,54(8): 1502-1508
36.喻兆阳, 薛慧颖, 裘琳, 刘异, 李娟.脂质-中空介孔硅联合递送盐酸多柔比星及miR-375治疗肝癌的研究[J]. 药学学报, 2019,54(1): 151-158
37.刘薇, 陈丽青, 辛欣, 黄伟, 高钟镐.抗肿瘤抗生素药物制剂的研究进展[J]. 药学学报, 2018,53(6): 865-877
38.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099
39.薛建秀, 毕洪书, 李雨爱, 陈瑶, 刘晓庆, 徐正奇, 潘虎威, 石凯.壳-核结构多柔比星脂质磷酸钙纳米粒的制备及体外性能评价[J]. 药学学报, 2018,53(8): 1364-1370
40.王兴, 王瑶琪, 张强, 易崇勤, 王学清.纳米药物递送系统的细胞药代动力学研究进展[J]. 药学学报, 2018,53(10): 1620-1629
41.季宇彬, 周欣欣, 国瑞琪, 聂凡茹, 王向涛.和厚朴酚纳米混悬剂的制备及其体内外研究[J]. 药学学报, 2018,53(1): 133-140
42.章越, 丁陈陈, 温露, 陈钢.核壳型聚乳酸-羟基乙酸共聚物磁性纳米系统用于中药复方多组分的时空递释[J]. 药学学报, 2018,53(12): 1968-1975
43.王丹丹, 刘瑞, 王钰, 李芳, 陈维良, 张学农.共载多柔比星和siRNA的还原敏感性纳米粒的体外靶向性评价[J]. 药学学报, 2018,53(12): 2104-2112
44.季宇彬, 高艺璇, 徐浩, 张雪洁, 王向涛.以泊洛沙姆188为稳定剂的番荔枝内酯纳米混悬剂的制备及其体内外研究[J]. 药学学报, 2018,53(12): 2113-2121
45.季宇彬, 聂凡茹, 周欣欣, 王向涛.藤黄酸纳米混悬剂的制备及抗肿瘤作用[J]. 药学学报, 2018,53(3): 453-459
46.缪云秋, 何淑芳, 梁金英, 柯琴, 张馨欣, 王瑞, 甘勇.脂质-磷酸钙核/壳纳米粒作为抗肿瘤药物载体的初步研究[J]. 药学学报, 2017,52(6): 977-984
47.袁鹏, 郭晓辰, 张军平, 吕仕超, 朱亚萍.外泌体作为中药载体的研究进展[J]. 药学学报, 2017,52(11): 1667-1672
48.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017,52(7): 1110-1116
49.段迎超, 翟晓雨, 秦文平, 关圆圆.基于PROTACs策略的抗肿瘤药物研究进展[J]. 药学学报, 2017,52(12): 1801-1810
50.李曼, 杨玉婷, 何勤, 张志荣.纳米载体在肿瘤免疫治疗中的研究进展[J]. 药学学报, 2017,52(12): 1839-1848
51.王雪, 王亚华, 刘厦, 李翀.基于识别烟碱型乙酰胆碱受体α7的分子印迹聚合物脑靶向载体初步研究[J]. 药学学报, 2017,52(3): 488-493
52.樊敦, 余敬谋, 黄皓, 金一.环境响应性递释系统在基因与药物共传递应用中的研究进展[J]. 药学学报, 2017,52(5): 713-721
53.贺佳玉, 吴丽, 王建春, 陈志鹏.马钱子碱新型壳聚糖纳米粒的体外抗肿瘤活性研究[J]. 药学学报, 2016,51(4): 650-656
54.王钰洁, 曹鑫, 刘小宇, 卢小玲, 李玉艳, 焦炳华.抗体偶联药物设计及临床研究进展[J]. 药学学报, 2016,51(8): 1209-1216
55.马银云, 李莉, 黄海凤, 缑三虎, 倪京满.肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016,51(5): 717-724
56.何琪杨.肿瘤异质性与抗肿瘤靶向药物的耐药性[J]. 药学学报, 2016,51(2): 197-201
57.韩旻, 李畅, 郭望葳, 刘惠娜, 梁文权, 高建青.线粒体靶向药物输送抗肿瘤的研究进展[J]. 药学学报, 2016,51(2): 257-263
58.范博, 金明姬, 黄伟, 王启明, 高钟镐.细胞穿膜肽在药物递送系统中的研究进展[J]. 药学学报, 2016,51(2): 264-271
59.窦晓倩, 付洁, 宋海峰.基于适配子的靶向治疗药物研究进展[J]. 药学学报, 2016,51(7): 1068-1076
60.胡宏祥, 王学清, 张华, 张强.分子靶向抗肿瘤药物的作用机制及临床研究进展[J]. 药学学报, 2015,50(10): 1232-1239
61.赵 波, 范俣辰, 王学清, 代文兵, 张 强, 王杏林.iRGD修饰的阿霉素主动靶向脂质体的细胞毒与抗肿瘤效果评价[J]. 药学学报, 2013,48(3): 417-422
62.杨艳芳, 谢向阳, 杨阳, 张慧, 梅兴国.粒径与表面电荷影响脂质体体内药物靶向递送的研究进展[J]. 药学学报, 2013,48(11): 1644-1650
63.刘洋, 蒋晨.纳米药物递释系统的脑靶向研究进展[J]. 药学学报, 2013,48(10): 1532-1543
64.周雅梅,吴学萍,曾理,张雅溶,潘黎军,王 驰 .肽修饰的甲氨蝶呤体外抗肿瘤作用初步研究[J]. 药学学报, 2012,47(4): 452-458
65.于菲菲 邹 豪 钟延强.逐层组装技术在药物递送领域应用的研究进展[J]. 药学学报, 2012,47(3): 332-338
66.王啸林,王清清,宋海峰.适配子介导siRNA靶向递送系统的研究进展[J]. 药学学报, 2012,47(7): 850-855
67.陈 军.抗肿瘤热敏靶向脂质体的研究进展[J]. 药学学报, 2011,46(5): 502-506
68.周鹏举 邓盛齐 龚前飞.靶向给药研究的新进展[J]. 药学学报, 2010,45(3): 300-306
69.祖元刚, 袁帅, 赵修华, 张俞, 张晓楠, 姜茹.叶酸介导表没食子儿茶素没食子酸白蛋白纳米粒的制备及其体外靶向性与活性评价[J]. 药学学报, 2009,44(5): 525-531
70.赵 杰 曹胜利 郑晓霖 赵 波.叶酸受体介导的抗肿瘤药物研究进展[J]. 药学学报, 2009,44(2): 109-114
71.孙晓译 魏丽丽 陈海靓 梁文权.纳米载体细胞器靶向的研究进展[J]. 药学学报, 2009,44(8): 838-844
72.沈圆圆 高钟镐 Natalya Rapoport.超声微泡作为基因或药物载体的研究进展[J]. 药学学报, 2009,44(9): 961-966
73.李锦娟;杨广德;王红英;张三奇.氟尿苷二丁酸酯固体脂质纳米粒的制备和肝靶向性研究[J]. 药学学报, 2008,43(7): 761-765
74.张伟;方晓玲.泊洛沙姆在药物穿越血脑屏障中的重要作用[J]. 药学学报, 2008,43(9): 890-897
75.孙艳;王驰.短肽在靶向药物递送系统中的研究进展[J]. 药学学报, 2008,43(10): 992-996
76.张馨欣;甘勇;杨星钢;朱春柳;甘莉;聂淑芳;潘卫三.聚乙二醇修饰的羟基喜树碱纳米脂质载体的制备及其小鼠组织分布[J]. 药学学报, 2008,43(1): 91-96
77.姚静;周建平;平其能.川陈皮素纳米乳的理化性质及其在小鼠体内的分布[J]. 药学学报, 2007,42(6): 663-668
78.陈钢;侯世祥;胡平;金描真;刘军.经内耳途径靶向脑给药的初步研究[J]. 药学学报, 2007,42(10): 1102-1106
79.张奇;项光亚;龙娜;林佳亮;曾凡波.叶酸靶向的PGA联合N-苯乙酰化阿霉素的抗肿瘤活性[J]. 药学学报, 2005,40(11): 1046-1050
80.温涛;贾涛;王义明;罗国安.纳米载体药物应用的研究进展纳米载体药物应用的研究进展[J]. 药学学报, 2003,38(3): 236-240
81.于波涛;张志荣;曾仁杰.肝靶向氟尿嘧啶类脂纳米粒的研究[J]. 药学学报, 2000,35(9): 700-705
82.杨时成;朱家壁;梁秉文;杨昌正.喜树碱固体脂质纳米粒的研究[J]. 药学学报, 1999,34(2): 146-150
83.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,