药学学报, 2022, 57(5): 1273-1281
引用本文:
刘怡彤, 孙洋*. 结肠炎癌转化调控机制和化学干预的研究进展[J]. 药学学报, 2022, 57(5): 1273-1281.
LIU Yi-tong, SUN Yang*. Advances in mechanisms for inflammation-associated colon carcinogenesis and chemoprevention[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1273-1281.

结肠炎癌转化调控机制和化学干预的研究进展
刘怡彤, 孙洋*
南京大学生命科学学院生物技术与药学系, 医药生物技术国家重点实验室, 江苏 南京 210023
摘要:
结直肠癌是消化道常见恶性肿瘤,炎症性肠病发展为结直肠癌的风险显著增加。免疫信号通路NF-κB、IL-6/STAT3、COX-2/PGE2、IL-23/Th17、TLRs等已被证实能够促进结肠炎向结直肠癌转化的进程,NOD2与肠道微生物的作用也参与炎癌转化的调控。慢性炎症作为结直肠癌的潜在风险,抑制炎症的药物可能起到化学预防的作用。本综述对结肠炎癌转化过程相关的信号通路进行了总结,并对用于结肠癌化学预防的药物进行了概述。
关键词:    炎症性肠病      结直肠癌      炎症信号通路      炎癌转化      化学预防     
Advances in mechanisms for inflammation-associated colon carcinogenesis and chemoprevention
LIU Yi-tong, SUN Yang*
State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
Abstract:
Colorectal cancer is a common malignant tumor of digestive tract, and the risk of inflammatory bowel disease developing into colorectal cancer is significantly increased. Immune signaling pathways NF-κB, IL-6/STAT3, COX-2/PGE2, IL-23/Th17 and TLRs have been confirmed to promote the transformation from colitis to colorectal cancer. NOD2 and intestinal microbes also participate in the regulation of inflammation mediated carcinogenesis. Chronic inflammation is a potential risk for colorectal cancer, and anti-inflammatory drugs may play a chemical preventive role. In this review, we summarize the signaling pathways involved in inflammation-associated colon carcinogenesis and evaluate the chemoprophylaxis of colon cancer.
Key words:    inflammatory bowel disease    colorectal cancer    inflammatory signaling pathway    inflammatory carcinomatosis    chemoprevention   
收稿日期: 2021-10-08
DOI: 10.16438/j.0513-4870.2021-1452
基金项目: 国家自然科学基金资助项目(81872877,91853109).
通讯作者: 孙洋,Tel:86-25-89681312,Fax:86-25-89687620,E-mail:yangsun@nju.edu.cn
Email: yangsun@nju.edu.cn
相关功能
PDF(487KB) Free
打印本文
0
作者相关文章
刘怡彤  在本刊中的所有文章
孙洋*  在本刊中的所有文章

参考文献:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71:209-249.
[2] Long AG, Lundsmith ET, Hamilton KE. Inflammation and colorectal cancer[J]. Curr Colorectal Cancer Rep, 2017, 13:341-351.
[3] Eluri S, Parian AM, Limketkai BN, et al. Nearly a third of high-grade dysplasia and colorectal cancer is undetected in patients with inflammatory bowel disease[J]. Dig Dis Sci, 2017, 62:3586-3593.
[4] Hayden MS, Ghosh S. Shared principles in NF-κB signaling[J]. Cell, 2008, 132:344-362.
[5] Yuan Z, Yuan Z, Hasnat M, et al. A new perspective of triptolide-associated hepatotoxicity:the relevance of NF-κB and NF-κB-mediated cellular FLICE-inhibitory protein[J]. Acta Pharm Sin B, 2020, 10:861-877.
[6] Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK:integral components of immune system signaling[J]. Adv Exp Med Biol, 2019, 1172:207-226.
[7] Balaji S, Ahmed M, Lorence E, et al. NF-κB signaling and its relevance to the treatment of mantle cell lymphoma[J]. J Hematol Oncol, 2018, 11:83.
[8] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17:545-558.
[9] Christian F, Smith EL, Carmody RJ. The regulation of NF-κB subunits by phosphorylation[J]. Cells, 2016, 5:12.
[10] Chen S, Liu H, Li Z, et al. Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling[J]. Cell Death Dis, 2021, 12:563.
[11] Zhao Y, Yang Y, Zhang J, et al. Lactoferrin-mediated macrophage targeting delivery and patchouli alcohol-based therapeutic strategy for inflammatory bowel diseases[J]. Acta Pharm Sin B, 2020, 10:1966-1976.
[12] Karin M. Nuclear factor-kappaB in cancer development and progression[J]. Nature, 2006, 441:431-436.
[13] Karin M, Greten FR. NF-κB:linking inflammation and immunity to cancer development and progression[J]. Nat Rev Immunol, 2005, 5:749-759.
[14] Richmond A. NF-kappa B, chemokine gene transcription and tumour growth[J]. Nat Rev Immunol, 2002, 2:664-674.
[15] Patel M, Horgan PG, McMillan DC, et al. NF-κB pathways in the development and progression of colorectal cancer[J]. Transl Res, 2018, 197:43-56.
[16] Greten FR, Eckmann L, Greten TF, et al. IKK beta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer[J]. Cell, 2004, 118:285-296.
[17] Allen IC, Wilson JE, Schneider M, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling[J]. Immunity, 2012, 36:742-754.
[18] Schwitalla S, Ziegler PK, Horst D, et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors[J]. Cancer Cell, 2013, 23:93-106.
[19] Ridiandries A, Tan JT, Bursill CA. The role of CC-chemokines in the regulation of angiogenesis[J]. Int J Mol Sci, 2016, 17:1856.
[20] Popivanova BK, Kitamura K, Wu Y, et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis[J]. J Clin Invest, 2008, 118:560-570.
[21] Onizawa M, Nagaishi T, Kanai T, et al. Signaling pathway via TNF-α/NF-κB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296:G850-G859.
[22] Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis[J]. J Basic Clin Physiol Pharmacol, 2018, 30:1-10.
[23] Zeng J, Tang ZH, Liu S, et al. Clinicopathological significance of overexpression of interleukin-6 in colorectal cancer[J]. World J Gastroenterol, 2017, 23:1780-1786.
[24] Guan X. Cancer metastases:challenges and opportunities[J]. Acta Pharm Sin B, 2015, 5:402-418.
[25] Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15:234-248.
[26] Grivennikov S, Karin E, Terzic J, et al. IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer[J]. Cancer Cell, 2009, 15:103-113.
[27] Liang J, Nagahashi M, Kim EY, et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer[J]. Cancer Cell, 2013, 23:107-120.
[28] Lee H, Deng J, Kujawski M, et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors[J]. Nat Med, 2010, 16:1421-1428.
[29] Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated STAT3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis[J]. Cancer Cell, 2009, 15:91-102.
[30] Tian Y, Ye Y, Gao W, et al. Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway[J]. Int J Colorectal Dis, 2011, 26:13-22.
[31] Lee DH, Sung KS, Bartlett DL, et al. HSP90 inhibitor NVP-AUY922 enhances TRAIL-induced apoptosis by suppressing the JAK2-STAT3-Mcl-1 signal transduction pathway in colorectal cancer cells[J]. Cell Signal, 2015, 27:293-305.
[32] Pang LY, Hurst EA, Argyle DJ. Cyclooxygenase-2:a role in cancer stem cell survival and repopulation of cancer cells during therapy[J]. Stem Cells Int, 2016, 2016:2048731.
[33] Sheng J, Sun H, Yu FB, et al. The role of cyclooxygenase-2 in colorectal cancer[J]. Int J Med Sci, 2020, 17:1095-1101.
[34] Hirano T, Hirayama D, Wagatsuma K, et al. Immunological mechanisms in inflammation-associated colon carcinogenesis[J]. Int J Mol Sci, 2020, 21:3062.
[35] Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2[J]. Nat Rev Cancer, 2001, 1:11-21.
[36] Agoff SN, Brentnall TA, Crispin DA, et al. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia[J]. Am J Pathol, 2000, 157:737-745.
[37] Din FV, Theodoratou E, Farrington SM, et al. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer[J]. Gut, 2010, 59:1670-1679.
[38] Rothwell PM, Wilson M, Elwin CE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality:20-year follow-up of five randomised trials[J]. Lancet, 2010, 376:1741-1750.
[39] Shikawa H, Mutoh M, Suzuki S, et al. The preventive effects of low-dose enteric-coated aspirin tablets on the development of colorectal tumours in Asian patients:a randomised trial[J]. Gut, 2014, 63:1755-1759
[40] Chulada PC, Thompson MB, Mahler JF, et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice[J]. Cancer Res, 2000, 60:4705-4708.
[41] Srivastava S, Dewangan J, Mishra S, et al. Piperine and celecoxib synergistically inhibit colon cancer cell proliferation via modu-lating Wnt/β-catenin signaling pathway[J]. Phytomedicine, 2021, 84:153484.
[42] Mortezaee K, Salehi E, Mirtavoos-Mahyari H, et al. Mechanisms of apoptosis modulation by curcumin:implications for cancer therapy[J]. J Cell Physiol, 2019, 234:12537-12550.
[43] Castellone MD, Teramoto H, Williams BO, et al. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis[J]. Science, 2005, 310:1504-1510.
[44] Fujino H, Seira N, Kurata N, et al. Prostaglandin E2-stimulated prostanoid EP4 receptors induce prolonged de novo prostaglandin E2 synthesis through biphasic phosphorylation of extracellular signal-regulated kinases mediated by activation of protein kinase A in HCA-7 human colon cancer cells[J]. Eur J Pharmacol, 2015, 768:149-159.
[45] Tong D, Liu Q, Wang LA, et al. The roles of the COX2/PGE2/EP axis in therapeutic resistance[J]. Cancer Metastasis Rev, 2018, 37:355-368.
[46] Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer[J]. Oncogene, 2010, 29:781-788.
[47] Kawahara K, Hohjoh H, Inazumi T, et al. Prostaglandin E2-induced inflammation:relevance of prostaglandin E receptors[J]. Biochim Biophys Acta, 2015, 1851:414-421.
[48] Sheibanie AF, Yen JH, Khayrullina T, et al. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23——>IL-17 axis[J]. J Immunol, 2007, 178:8138-8147.
[49] Maseda D, Banerjee A, Johnson EM, et al. mPGES-1-mediated production of PGE2 and EP4 receptor sensing regulate T cell colonic inflammation[J]. Front Immunol, 2018, 9:2954.
[50] Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium[J]. EMBO J, 2017, 36:5-24.
[51] Mutoh M, Watanabe K, Kitamura T, et al. Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis[J]. Cancer Res, 2002, 62:28-32.
[52] Wang D, Wang H, Brown J, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer[J]. J Exp Med, 2006, 203:941-951.
[53] Katoh H, Wang D, Daikoku T, et al. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis[J]. Cancer Cell, 2013, 24:631-644.
[54] Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity, 2000, 13:715-725.
[55] Parham C, Chirica M, Timans J, et al. A receptor for the hetero-dimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R[J]. J Immunol, 2002, 168:5699-5708.
[56] McGovern D, Powrie F. The IL23 axis plays a key role in the pathogenesis of IBD[J]. Gut, 2007, 56:1333-1336.
[57] Neurath MF. IL-23 in inflammatory bowel diseases and colon cancer[J]. Cytokine Growth Factor Rev, 2019, 45:1-8.
[58] Elson CO, Cong Y, Weaver CT, et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice[J]. Gastroenterology, 2007, 132:2359-2370.
[59] Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation[J]. J Clin Invest, 2006, 116:1218-1222.
[60] Hundorfean G, Neurath MF, Mudter J. Functional relevance of T helper 17(Th17) cells and the IL-17 cytokine family in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2012, 18:180-186.
[61] Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth[J]. Nature, 2012, 491:254-258.
[62] Liu J, Duan Y, Cheng X, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma[J]. Biochem Biophys Res Commun, 2011, 407:348-354.
[63] Liu C, Liu R, Wang B, et al. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer[J]. J Immunother Cancer, 2021, 9:e001895.
[64] Hurtado CG, Wan F, Housseau F, et al. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer[J]. Gastroenterology, 2018, 155:1706-1715.
[65] Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells[J]. Nature, 2007, 448:480-483.
[66] Zhou L, Ivanov II, Spolski R, et al. IL-6 programs TH-17 cell diffe-rentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J]. Nat Immunol, 2007, 8:967-974.
[67] Ljujic B, Radosavljevic G, Jovanovic I, et al. Elevated serum level of IL-23 correlates with expression of VEGF in human colorectal carcinoma[J]. Arch Med Res, 2010, 41:182-189.
[68] Stolfi C, Rizzo A, Franzè E, et al. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer[J]. J Exp Med, 2011, 208:2279-2290.
[69] Shen W, Durum SK. Synergy of IL-23 and Th17 cytokines:new light on inflammatory bowel disease[J]. Neurochem Res, 2010, 35:940-946.
[70] Jiang R, Wang H, Deng L, et al. IL-22 is related to development of human colon cancer by activation of STAT3[J]. BMC Cancer, 2013, 13:59.
[71] Witte E, Witte K, Warszawska K, et al. Interleukin-22:a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection[J]. Cytokine Growth Factor Rev, 2010, 21:365-379.
[72] Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis[J]. J Clin Invest, 2008, 118:534-544.
[73] Sasai M, Yamamoto M. Pathogen recognition receptors:ligands and signaling pathways by Toll-like receptors[J]. Int Rev Immunol, 2013, 32:116-133.
[74] Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180:1044-1066.
[75] Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling[J]. J Leukoc Biol, 2016, 100:927-941.
[76] Aviello G, Corr SC, Johnston DG, et al. MyD88 adaptor-like (Mal) regulates intestinal homeostasis and colitis-associated colorectal cancer in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306:G769-G778.
[77] Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells[J]. Nat Rev Cancer, 2012, 12:265-277.
[78] Cubillos-Ruiz JR, Engle X, Scarlett UK, et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity[J]. J Clin Invest, 2009, 119:2231-2244.
[79] Nierkens S, den Brok MH, Garcia Z, et al. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded speci-fically upon TLR9 function in plasmacytoid dendritic cells[J]. Cancer Res, 2011, 71:6428-6437.
[80] Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells[J]. Science, 2003, 299:1033-1036.
[81] Rhee SH, Im E, Pothoulakis C. Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer[J]. Gastroenterology, 2008, 135:518-528.
[82] Pikarsky E, Porat RM, Stein I, et al. NF-κB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431:461-466.
[83] Sipos F, Fűri I, Constantinovits M, et al. Contribution of TLR signaling to the pathogenesis of colitis-associated cancer in inflammatory bowel disease[J]. World J Gastroenterol, 2014, 20:12713-12721.
[84] Fukata M, Chen A, Klepper A, et al. Cox-2 is regulated by Toll-like receptor-4(TLR4) signaling:role in proliferation and apoptosis in the intestine[J]. Gastroenterology, 2006, 131:862-877.
[85] Huang B, Zhao J, Li H, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance[J]. Cancer Res, 2005, 65:5009-5014.
[86] Fukata M, Hernandez Y, Conduah D, et al. Innate immune signaling by Toll-like receptor-4(TLR4) shapes the inflammatory micro-environment in colitis-associated tumors[J]. Inflamm Bowel Dis, 2009, 15:997-1006.
[87] Fukata M, Shang L, Santaolalla R, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis[J]. Inflamm Bowel Dis, 2011, 17:1464-1473.
[88] Negroni A, Pierdomenico M, Cucchiara S, et al. NOD2 and inflammation:current insights[J]. J Inflamm Res, 2018, 11:49-60.
[89] Trindade BC, Chen GY. NOD1 and NOD2 in inflammatory and infectious diseases[J]. Immunol Rev, 2020, 297:139-161.
[90] Al Nabhani Z, Dietrich G, Hugot JP, et al. Nod2:the intestinal gate keeper[J]. PLoS Pathog, 2017, 13:e1006177.
[91] Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis of the NOD2 signalling pathway[J]. Open Biol, 2014, 4:140178.
[92] Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins:regulators of inflammation in health and disease[J]. Nat Rev Immunol, 2014, 14:9-23.
[93] Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes:a genetic association study[J]. Lancet, 2016, 387:156-167.
[94] Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2011, 17:179-184.
[95] Macho Fernandez E, Valenti V, Rockel C, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide[J]. Gut, 2011, 60:1050-1059.
[96] Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer[J]. J Clin Invest, 2013, 123:700-711.
[97] Stolfi C, De Simone V, Pallone F, et al. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer[J]. Int J Mol Sci, 2013, 14:17972-17985.
[98] Baan B, Dihal AA, Hoff E, et al. 5-Aminosalicylic acid inhibits cell cycle progression in a phospholipase D dependent manner in colorectal cancer[J]. Gut, 2012, 61:1708-1715.
[99] Qiu X, Ma J, Wang K, et al. Chemopreventive effects of 5-aminosalicylic acid on inflammatory bowel disease-associated colorectal cancer and dysplasia:a systematic review with meta-analysis[J]. Oncotarget, 2017, 8:1031-1045.
[100] Nguyen GC, Gulamhusein A, Bernstein CN. 5-Aminosalicylic acid is not protective against colorectal cancer in inflammatory bowel disease:a meta-analysis of non-referral populations[J]. Am J Gastroenterol, 2012, 107:1298-1304.
[101] Atiqi S, Hooijberg F, Loeff FC, et al. Immunogenicity of TNF-inhibitors[J]. Front Immunol, 2020, 11:312.
[102] Baars JE, Looman CW, Steyerberg EW, et al. The risk of inflammatory bowel disease-related colorectal carcinoma is limited:results from a nationwide nested case-control study[J]. Am J Gastroenterol, 2011, 106:319-328.
[103] Cheddani H, Dauchet L, Fumery M, et al. Cancer in elderly onset inflammatory bowel disease:a population-based study[J]. Am J Gastroenterol, 2016, 111:1428-1436.
[104] Kopylov U, Vutcovici M, Kezouh A, et al. Risk of lymphoma, colorectal and skin cancer in patients with IBD treated with immunomodulators and biologics:a Quebec claims database study[J]. Inflamm Bowel Dis, 2015, 21:1847-1853.
[105] Huang S, Chen M, Ding X, et al. Proton pump inhibitor selectively suppresses proliferation and restores the chemosensitivity of gastric cancer cells by inhibiting STAT3 signaling pathway[J]. Int Immunopharmacol, 2013, 17:585-592.
[106] Lamy S, Akla N, Ouanouki A, et al. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway[J]. Exp Cell Res, 2012, 318:1586-1596.
[107] Kang S, Tanaka T, Narazaki M, et al. Targeting interleukin-6 signaling in clinic[J]. Immunity, 2019, 50:1007-1023.
[108] Noviello D, Mager R, Roda G, et al. The IL23-IL17 immune axis in the treatment of ulcerative colitis:successes, defeats, and ongoing challenges[J]. Front Immunol, 2021, 12:611256.
[109] Atreya R, Reinisch W, Peyrin-Biroulet L, et al. Clinical efficacy of the Toll-like receptor 9 agonist cobitolimod using patient-reported-outcomes defined clinical endpoints in patients with ulcerative colitis[J]. Dig Liver Dis, 2018, 50:1019-1029.
[110] Katona BW, Weiss JM. Chemoprevention of colorectal cancer[J]. Gastroenterology, 2020, 158:368-388.
[111] Burr NE, Hull MA, Subramanian V. Does aspirin or non-aspirin non-steroidal anti-inflammatory drug use prevent colorectal cancer in inflammatory bowel disease?[J] World J Gastroenterol, 2016, 22:3679-3686.
[112] Ananthakrishnan AN, Cagan A, Cai T, et al. Statin use is associated with reduced risk of colorectal cancer in patients with inflammatory bowel diseases[J]. Clin Gastroenterol Hepatol, 2016, 14:973-979.
[113] Wu X, Hu W, Lu L, et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment[J]. Acta Pharm Sin B, 2019, 9:203-219.
[114] Burr NE, Hull MA, Subramanian V. Folic acid supplementation may reduce colorectal cancer risk in patients with inflammatory bowel disease:a systematic review and meta-analysis[J]. J Clin Gastroenterol, 2017, 51:247-253.