药学学报, 2022, 57(5): 1289-1300
引用本文:
徐淑静#, 丁当#, 刘新泳*, 展鹏*. 浅谈广谱抗病毒药物研发的普适性策略[J]. 药学学报, 2022, 57(5): 1289-1300.
XU Shu-jing#, DING Dang#, LIU Xin-yong*, ZHAN Peng*. Universal strategies and methodologies in broad-spectrum antiviral drug discovery[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1289-1300.

浅谈广谱抗病毒药物研发的普适性策略
徐淑静#, 丁当#, 刘新泳*, 展鹏*
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
病毒感染疾病严重威胁人类生命健康与社会发展。为应对未来可能暴发的新发和再现病毒疫情,研发广谱抗病毒药物成为重要且紧迫的研究课题。本文精选近年经典案例,从抗病毒药物研究的共同靶标、共性环节、通用策略以及广谱抗病毒分子等四个主要方面总结了广谱抗病毒药物研发的普适性策略,期望对当下及未来的抗病毒药物研发提供参考。
关键词:    病毒      广谱抗病毒药物      抑制剂      药物设计      药物化学     
Universal strategies and methodologies in broad-spectrum antiviral drug discovery
XU Shu-jing#, DING Dang#, LIU Xin-yong*, ZHAN Peng*
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Virus infection is a serious threat to human health and social development. The increase in pandemics caused by emerging and re-emerging viruses highlights the urgent need for broad-spectrum antivirals. In this perspective, we highlight recent case studies and summarize the universal strategies and methodologies in broad-spectrum antiviral drug discovery from common targets, common steps in viral life cycle, universal strategies, and broad-spectrum molecules, hoping to provide valuable guidance for the current and future development of antiviral drugs.
Key words:    virus    broad-spectrum antiviral drug    inhibitor    drug design    medicinal chemistry   
收稿日期: 2021-12-13
DOI: 10.16438/j.0513-4870.2021-1783
基金项目: 国家自然科学基金资助项目(81773574,81973181,82173677);山东省杰出青年基金资助项目(ZR2020JQ31);山东省重大科技创新工程项目(2019JZZY021011).
通讯作者: 刘新泳,E-mail:xinyongl@sdu.edu.cn;展鹏,E-mail:zhanpeng1982@sdu.edu.cn
Email: xinyongl@sdu.edu.cn;zhanpeng1982@sdu.edu.cn
相关功能
PDF(759KB) Free
打印本文
0
作者相关文章
徐淑静#  在本刊中的所有文章
丁当#  在本刊中的所有文章
刘新泳*  在本刊中的所有文章
展鹏*  在本刊中的所有文章

参考文献:
[1] Ma Y, Frutos-Beltrán E, Kang D, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses[J]. Chem Soc Rev, 2021, 50:4514-4540.
[2] Fu ZP, Kang DW, Liu XY, et al. Advances of research on target-based anti-AIDS drugs[J]. Prog Pharm Sci (药学进展), 2020, 44:681-697.
[3] Huo ZP, Zuo XF, Kang DW, et al. Research progress on new targets of anti-AIDS drugs and their small molecule inhibitors[J]. Acta Pharm Sin (药学学报), 2018, 53:356-374.
[4] Song LT, Cheng YS, Gao SH, et al. Research progress of human coronavirus broad-spectrum inhibitors[J]. Chin J Med Chem (中国药物化学杂志), 2021, 31:721-738.
[5] Huang TG, Sun L, Zhan P, et al. Recent advances in the research of broad-spectrum antiviral agents[J]. Acta Pharm Sin (药学学报), 2020, 55:679-693.
[6] Li J, Jiang XY, Xu SJ, et al. Medicinal chemistry strategies in seeking coronavirus inhibitors[J]. Acta Pharm Sin (药学学报), 2020, 55:537-553.
[7] Jiang S, He Y, Liu S. SARS vaccine development[J]. Emerg Infect Dis, 2005, 11:1016-1020.
[8] Xu SJ, Zhang XJ, Ding D, et al. Bioinorganic chemistry strategies in antiviral drug discovery[J]. Acta Pharm Sin (药学学报), 2022, 57:576-592.
[9] Xu SJ, Ding D, Zhang XJ, et al. Novel targets and strategies in antiviral drug discovery[J]. Acta Pharm Sin (药学学报), 2022, 57:903-916.
[10] Bravo MF, Lema MA, Marianski M, et al. Flexible synthetic carbohydrate receptors as inhibitors of viral attachment[J]. Biochemistry, 2021, 60:999-1018.
[11] Balzarini J. Carbohydrate-binding agents:a potential future cornerstone for the chemotherapy of enveloped viruses?[J]. Antivir Chem Chemother, 2007, 18:1-11.
[12] Gupta RK, Apte GR, Lokhande KB, et al. Carbohydrate-binding agents:potential of repurposing for COVID-19 therapy[J]. Curr Protein Pept Sci, 2020, 21:1085-1096.
[13] François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses[J]. Med Res Rev, 2012, 32:349-387.
[14] Palanichamy K, Joshi A, Mehmetoglu-Gurbuz T, et al. Anti-zika activity of a library of synthetic carbohydrate receptors[J]. J Med Chem, 2019, 62:4110-4119.
[15] Vanderlinden E, Van Winkel N, Naesens L, et al. In vitro characterization of the carbohydrate-binding agents HHA, GNA, and UDA as inhibitors of influenza A and B virus replication[J]. Antimicrob Agents Chemother, 2021, 65:e01732-20.
[16] Francesconi O, Nativi C, Gabrielli G, et al. Antiviral activity of synthetic aminopyrrolic carbohydrate binding agents:targeting the glycans of viral gp120 to inhibit HIV entry[J]. Chemistry, 2015, 21:10089-10093.
[17] Trippier PC, McGuigan C, Balzarini J. Phenylboronic-acid-based carbohydrate binders as antiviral therapeutics:monophenylboronic acids[J]. Antivir Chem Chemother, 2010, 20:249-257.
[18] Vigant F, Santos NC, Lee B. Broad-spectrum antivirals against viral fusion[J]. Nat Rev Microbiol, 2015, 13:426-437.
[19] Jackman JA. Antiviral peptide engineering for targeting membrane-enveloped viruses:recent progress and future directions[J]. Biochim Biophys Acta Biomembr, 2021, 1864:183821.
[20] Yoon BK, Jeon WY, Sut TN, et al. Stopping membrane-enveloped viruses with nanotechnology strategies:toward antiviral drug development and pandemic preparedness[J]. ACS Nano, 2021, 15:125-148.
[21] Regen SL. Membrane-disrupting molecules as therapeutic agents:a cautionary note[J]. JACS Au, 2020, 1:3-7.
[22] Mbarek A, Moussa G, Chain JL. Pharmaceutical applications of molecular tweezers, clefts and clips[J]. Molecules, 2019, 24:1803.
[23] Weil T, Groß R, Röcker A, et al. Supramolecular mechanism of viral envelope disruption by molecular tweezers[J]. J Am Chem Soc, 2020, 142:17024-17038.
[24] Lump E, Castellano LM, Meier C, et al. A molecular tweezer antagonizes seminal amyloids and HIV infection[J]. Elife, 2015, 18:e05397.
[25] Röcker AE, Müller JA, Dietzel E, et al. The molecular tweezer CLR01 inhibits Ebola and Zika virus infection[J]. Antiviral Res, 2018, 152:26-35.
[26] Yu X, Zhang L, Tong L, et al. Broad-spectrum virucidal activity of bacterial secreted lipases against flaviviruses, SARS-CoV-2 and other enveloped viruses[J]. bioRxiv, 2020.05.22.109900. DOI:https://doi.org/10.1101/2020.05.22.109900.
[27] Xu HT, Colby-Germinario SP, Hassounah S, et al. Identification of a pyridoxine-derived small-molecule inhibitor targeting dengue virus RNA-dependent RNA polymerase[J]. Antimicrob Agents Chemother, 2015, 60:600-608.
[28] Maio N, Lafont BAP, Sil D, et al. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets[J]. Science, 2021, 373:236-241.
[29] García CC, Damonte EB. Zn finger containing proteins as targets for the control of viral infections[J]. Infect Disord Drug Targets, 2007, 7:204-212.
[30] Wang X, Xia S, Zhu Y, et al. Pan-coronavirus fusion inhibitors as the hope for today and tomorrow[J]. Protein Cell, 2021, 12:84-88.
[31] Wang C, Zhao L, Xia S, et al. Design of α-helical lipopeptides targeting viral fusion proteins:a promising strategy for relatively broad-spectrum antiviral drug discovery[J]. J Med Chem, 2018, 61:8734-8745.
[32] Xia S, Yan L, Xu W, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike[J]. Sci Adv, 2019, 5:eaav4580.
[33] Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2(previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion[J]. Cell Res, 2020, 30:343-355.
[34] Zhang Y, Hou LX, Ju H, et al. Research progress of antiviral drugs targeting polymerase[J]. Chin J Med Chem (中国药物化学杂志), 2021, 31:657-679.
[35] Sun YY, Kang DW, Gao SH, et al. Recent advances in the research of nucleoside antiviral agents[J]. Chin J Med Chem (中国药物化学杂志), 2021, 31:55-75.
[36] Seley-Radtke KL, Thames JE, Waters CD. Broad spectrum antiviral nucleosides-our best hope for the future[J]. Annu Rep Med Chem, 2021, 57:109-132.
[37] Sun L, Peng Y, Yu W, et al. Mechanistic insight into antiretroviral potency of 2'-deoxy-2'-β-fluoro-4'-azidocytidine (FNC) with a long-lasting effect on HIV-1 prevention[J]. J Med Chem, 2020, 63:8554-8566.
[38] Yan L, Yang Y, Li M, et al. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading[J]. Cell, 2021, 184:3474-3485.
[39] Sourimant J, Lieber CM, Aggarwal M, et al. 4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication[J]. Science, 2021, 2:eabj5508.
[40] Meng H, Yu F, He YP, et al. A novel orally bioavailable broad-spectrum antiviral[J]. J Clin Med (临床药物治疗杂志), 2020, 18:12-15.
[41] Shilatifard A. COVID-19:rescue by transcriptional inhibition[J]. Sci Adv, 2020, 6:eabc6891.
[42] Robson F, Khan KS, Le TK, et al. Coronavirus RNA proofreading:molecular basis and therapeutic targeting[J]. Mol Cell, 2020, 79:710-727.
[43] Kabinger F, Stiller C, Schmitzová J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis[J]. Nat Struct Mol Biol, 2021, 28:740-746.
[44] Gordon CJ, Tchesnokov EP, Schinazi RF, et al. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template[J]. J Biol Chem, 2021, 297:100770.
[45] Malone B, Campbell EA. Molnupiravir:coding for catastrophe[J]. Nat Struct Mol Biol, 2021, 28:706-708.
[46] Hampton T. New flu antiviral candidate may thwart drug resistance[J]. JAMA, 2020, 323:17.
[47] Toots M, Yoon JJ, Cox RM, et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia[J]. Sci Transl Med, 2019, 11:eaax5866.
[48] Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice[J]. Sci Transl Med, 2020, 12:eabb5883.
[49] Cox RM, Wolf JD, Plemper RK. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets[J]. Nat Microbiol, 2021, 6:11-18.
[50] Zhao L, Zhong W. Mechanism of action of favipiravir against SARS-CoV-2:mutagenesis or chain termination?[J]. Innovation, 2021, 2:100165.
[51] Anokhina VS, Miller BL. Targeting ribosomal frameshifting as an antiviral strategy:from HIV-1 to SARS-CoV-2[J]. Acc Chem Res, 2021, 54:3349-3361.
[52] Bhatt PR, Scaiola A, Loughran G, et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome[J]. Science, 2021, 372:1306-1313.
[53] Schlick T, Zhu Q, Dey A, et al. To knot or not to knot:multiple conformations of the SARS-CoV-2 frameshifting RNA element[J]. J Am Chem Soc, 2021, 143:11404-11422.
[54] Neupane K, Zhao M, Lyons A, et al. Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers[J]. Nat Commun, 2021, 12:4749.
[55] Sun Y, Abriola L, Niederer RO, et al. Restriction of SARS-CoV-2 replication by targeting programmed-1 ribosomal frameshifting[J]. Proc Natl Acad Sci U S A, 2021, 118:e2023051118.
[56] Ahn DG, Yoon GY, Lee S, et al. A novel frameshifting inhibitor having antiviral activity against zoonotic coronaviruses[J]. Viruses, 2021, 13:1639.
[57] Ai X, Wang D, Honko A, et al. Surface glycan modification of cellular nanosponges to promote SARS-CoV-2 inhibition[J]. J Am Chem Soc, 2021, 143:17615-17621.
[58] Parker CG, Domaoal RA, Anderson KS, et al. An antibody-recruiting small molecule that targets HIV gp120[J]. J Am Chem Soc, 2009, 131:16392-16394.
[59] Liu X, Zhang B, Wang Y, et al. A universal dual mechanism immunotherapy for the treatment of influenza virus infections[J]. Nat Commun, 2020, 11:5597.
[60] Painter MM, Zimmerman GE, Merlino MS, et al. Concanamycin A counteracts HIV-1 Nef to enhance immune clearance of infected primary cells by cytotoxic T lymphocytes[J]. Proc Natl Acad Sci U S A, 2020, 117:23835-23846.
[61] Rao S, Lungu C, Crespo R, et al. Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir[J]. Nat Commun, 2021, 12:2475.
[62] Jones ST, Cagno V, Janeček M, et al. Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry[J]. ACS Nano, 2018, 12:6429-6442.
[63] Nie C, Pouyan P, Lauster D, et al. Polysulfates block SARS-CoV-2 uptake through electrostatic interactions[J]. Angew Chem Int Ed Engl, 2021, 60:15870-15878.
[64] Muñoz A, Sigwalt D, Illescas BM, et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection[J]. Nat Chem, 2016, 8:50-57.
[65] Ramos-Soriano J, Reina JJ, Illescas BM, et al. Synthesis of highly efficient multivalent disaccharide/
[60] fullerene nanoballs for emergent viruses[J]. J Am Chem Soc, 2019, 141:15403-15412.
[66] Rodríguez-Pérez L, Ramos-Soriano J, Pérez-Sánchez A, et al. Nanocarbon-based glycoconjugates as multivalent inhibitors of ebola virus infection[J]. J Am Chem Soc, 2018, 140:9891-9898.
[67] Stadtmueller MN, Bhatia S, Kiran P, et al. Evaluation of multivalent sialylated polyglycerols for resistance induction in and broad antiviral activity against influenza A viruses[J]. J Med Chem, 2021, 64:12774-12789.
[68] Nie C, Parshad B, Bhatia S, et al. Topology-matching design of an influenza-neutralizing spiky nanoparticle-based inhibitor with a dual mode of action[J]. Angew Chem Int Ed Engl, 2020, 59:15532-15536.
[69] Nie C, Stadtmüller M, Yang H, et al. Spiky nanostructures with geometry-matching topography for virus inhibition[J]. Nano Lett, 2020, 20:5367-5375.
[70] Nie C, Stadtmüller M, Parshad B, et al. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors[J]. Sci Adv, 2021, 7:eabd3803.
[71] Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules:from fundamental principles towards the clinic[J]. Chem Soc Rev, 2021, 50:2224-2243.
[72] Meyer SM, Williams CC, Akahori Y, et al. Small molecule recognition of disease-relevant RNA structures[J]. Chem Soc Rev, 2020, 49:7167-7199.
[73] Costales MG, Childs-Disney JL, Haniff HS, et al. How we think about targeting RNA with small molecules[J]. J Med Chem, 2020, 63:8880-8900.
[74] Li P, Wei Y, Mei M, et al. Integrative analysis of zika virus genome RNA structure reveals critical determinants of viral infectivity[J]. Cell Host Microbe, 2018, 24:875-886.
[75] Sun L, Xu K, Huang W, et al. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures[J]. Cell Res, 2021, 31:495-516.
[76] Sreeramulu S, Richter C, Berg H, et al. Exploring the druggability of conserved RNA regulatory elements in the SARS-CoV-2 genome[J]. Angew Chem Int Ed Engl, 2021, 60:19191-19200.
[77] Yang SL, DeFalco L, Anderson DE, et al. Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions[J]. Nat Commun, 2021, 12:5113.
[78] Ruggiero E, Richter SN. Viral G-quadruplexes:new frontiers in virus pathogenesis and antiviral therapy[J]. Annu Rep Med Chem, 2020, 54:101-131.
[79] Zhao C, Qin G, Niu J, et al. Targeting RNA G-quadruplex in SARS-CoV-2:a promising therapeutic target for COVID-19?[J]. Angew Chem Int Ed Engl, 2021, 60:432-438.
[80] Melidis L, Hill HJ, Coltman NJ, et al. Supramolecular cylinders target bulge structures in the 5' UTR of the RNA genome of SARS-CoV-2 and inhibit viral replication[J]. Angew Chem Int Ed Engl, 2021, 60:18144-18151.
[81] Melidis L, Styles IB, Hannon MJ. Targeting structural features of viral genomes with a nano-sized supramolecular drug[J]. Chem Sci, 2021, 12:7174-7184.
[82] Haniff HS, Tong Y, Liu X, et al. Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders[J]. ACS Cent Sci, 2020, 6:1713-1721.
[83] Su X, Ma W, Feng D, et al. Efficient inhibition of SARS-CoV-2 using chimeric antisense oligonucleotides through RNase L activation[J]. Angew Chem Int Ed Engl, 2021, 60:21662-21667.
[84] Chen XF, Zhao X, Yang Z. Aptamer-based antibacterial and antiviral therapy against infectious diseases[J]. J Med Chem, 2021, 64:17601-17626.
[85] Sun M, Liu S, Wei X, et al. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection[J]. Angew Chem Int Ed Engl, 2021, 60:10266-10272.
[86] Schmitz A, Weber A, Bayin M, et al. A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism[J]. Angew Chem Int Ed Engl, 2021, 60:10279-10285.
[87] Sun M, Liu S, Song T, et al. Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape[J]. J Am Chem Soc, 2021, 143:21541-21548.
[88] Whiting M, Muldoon J, Lin YC, et al. Inhibitors of HIV-1 protease by using in situ click chemistry[J]. Angew Chem Int Ed Engl, 2006, 45:1435-1439.
[89] Schmidt MF, Isidro-Llobet A, Lisurek M, et al. Sensitized detection of inhibitory fragments and iterative development of non-peptidic protease inhibitors by dynamic ligation screening[J]. Angew Chem Int Ed Engl, 2008, 47:3275-3278.
[90] Tauber C, Wamser R, Arkona C, et al. Chemical evolution of antivirals against enterovirus D68 through protein-templated knoevenagel reactions[J]. Angew Chem Int Ed Engl, 2021, 60:13294-13301.
[91] Thun-Hohenstein STD, Suits TF, Malla TR, et al. Structure-activity studies reveal scope for optimisation of ebselen-type inhibition of SARS-COV-2 main protease[J]. ChemMedChem, 2022, 17:e202100582.
[92] Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections[J]. Free Radic Biol Med, 2020, 156:107-112.
[93] Menéndez CA, Byléhn F, Perez-Lemus GR, et al. Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease[J]. Sci Adv, 2020, 6:eabd0345.
[94] Zhang DW, Yan HL, Xu XS, et al. The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75[J]. J Enzyme Inhib Med Chem, 2020, 35:906-912.
[95] Thenin-Houssier S, de Vera IM, Pedro-Rosa L, et al. A small-molecule capsid inhibitor of HIV-1 replication[J]. Antimicrob Agents Chemother, 2016, 60:2195-2208.
[96] De Clercq E. 1984-Discovery of the first anti-HIV drug, suramin[J]. Viruses, 2021, 13:1646.
[97] Henß L, Beck S, Weidner T, et al. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry[J]. Virol J, 2016, 13:149.
[98] Yin W, Luan X, Li Z, et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin[J]. Nat Struct Mol Biol, 2021, 28:319-325.
[99] Bertolin AP, Weissmann F, Zeng J, et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase[J]. Biochem J, 2021, 478:2425-2443.
[100] Zeng J, Weissmann F, Bertolin AP, et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase[J]. Biochem J, 2021, 478:2405-2423.
[101] De Paiva REF, Marçal Neto A, Santos IA, et al. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks[J]. Dalton Trans, 2020, 4:16004-16033.
[102] Rothan HA, Stone S, Natekar J, et al. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells[J]. Virology, 2020, 547:7-11.
[103] Gil-Moles M, Basu U, Büssing R, et al. Gold metallodrugs to target coronavirus proteins:inhibitory effects on the spike-ACE2 interaction and on PLpro protease activity by auranofin and gold organometallics[J]. Chemistry, 2020, 26:15140-15144.
[104] Chuong C, DuChane CM, Webb EM, et al. Noble metal organometallic complexes display antiviral activity against SARS-CoV-2[J]. Viruses, 2021, 13:980.
[105] Karges J, Kalaj M, Gembicky M, et al. ReI tricarbonyl complexes as coordinate covalent inhibitors for the SARS-CoV-2 main cysteine protease[J]. Angew Chem Int Ed Engl, 2021, 60:10716-10723.
[106] Kuroki A, Tay J, Lee GH, et al. Broad-spectrum antiviral peptides and polymers[J]. Adv Healthc Mater, 2021, 10:e2101113.
[107] Galindo I, Garaigorta U, Lasala F, et al. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses[J]. Antiviral Res, 2021, 186:104990.
[108] Weston S, Baracco L, Keller C, et al. The SKI complex is a broad-spectrum, host-directed antiviral drug target for coronaviruses, influenza, and filoviruses[J]. Proc Natl Acad Sci U S A, 2020, 117:30687-30698.
[109] Yuan S, Chu H, Huang J, et al. Viruses harness YxxØ motif to interact with host AP2M1 for replication:a vulnerable broad-spectrum antiviral target[J]. Sci Adv, 2020, 6:eaba7910.
[110] Huang R, Xu M, Zhu H, et al. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2[J]. Nat Biotechnol, 2021, 39:747-753.
[111] Zhang CH, Stone EA, Deshmukh M, et al. Potent noncovalent inhibitors of the main protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations[J]. ACS Cent Sci, 2021, 7:467-475.
[112] Sutanto F, Shaabani S, Oerlemans R, et al. Combining high-throughput synthesis and high-throughput protein crystallography for accelerated hit identification[J]. Angew Chem Int Ed Engl, 2021, 60:18231-18239.
[113] Chamakuri S, Lu S, Ucisik MN, et al. DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors[J]. Proc Natl Acad Sci U S A, 2021, 118:e2111172118.
[114] El-Baba TJ, Lutomski CA, Kantsadi AL, et al. Allosteric inhibition of the SARS-CoV-2 main protease:insights from mass spectrometry based assays[J]. Angew Chem Int Ed Engl, 2020, 59:23544-23548.
[115] Ferron F, Decroly E, Selisko B, et al. The viral RNA capping machinery as a target for antiviral drugs[J]. Antiviral Res, 2012, 96:21-31.
[116] Kasprzyk R, Spiewla TJ, Smietanski M, et al. Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-methyltransferase[J]. Antiviral Res, 2021, 193:105142.
[117] Abdelnabi R, Kovacikova K, Moesslacher J, et al. Novel class of chikungunya virus small molecule inhibitors that targets the viral capping machinery[J]. Antimicrob Agents Chemother, 2020, 64:e00649-20.
[118] Gigante A, Gómez-SanJuan A, Delang L, et al. Antiviral activity of[1,2,3] triazolo[4,5-d] pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1[J]. Antiviral Res, 2017, 144:216-222.
[119] Delang L, Li C, Tas A, et al. The viral capping enzyme nsP1:a novel target for the inhibition of chikungunya virus infection[J]. Sci Rep, 2016, 6:31819.
[120] Nieva JL, Madan V, Carrasco L. Viroporins:structure and biological functions[J]. Nat Rev Microbiol, 2012, 10:563-574.
[121] Caly L, Wagstaff KM, Jans DA. Nuclear trafficking of proteins from RNA viruses:potential target for antivirals?[J]. Antiviral Res, 2012, 95:202-206.
[122] Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors[J]. Nature, 2020, 582:289-293.
[123] Xiong B, Gui CS, Xu XY, et al. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening[J]. Acta Pharmacol Sin, 2003, 24:497-504.
[124] Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV——a target for vaccine and therapeutic development[J]. Nat Rev Microbiol, 2009, 7:226-236.
[125] Su S, Du L, Jiang S. Learning from the past:development of safe and effective COVID-19 vaccines[J]. Nat Rev Microbiol, 2021, 19:211-219.
[126] Yuan S, Wang R, Chan JF, et al. Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters[J]. Nat Microbiol, 2020, 5:1439-1448.
[127] Yang N, Tanner JA, Wang Z, et al. Inhibition of SARS coronavirus helicase by bismuth complexes[J]. Chem Commun (Camb), 2007, 12:4413-4415.
[128] Lin MCM, Kung HF, Sun H, et al. Bismuth complexes inhibit the SARS coronavirus[J]. Angew Chem Weinheim Bergstr Ger, 2007, 119:6584-6588.
相关文献:
1.徐淑静#, 张续杰#, 丁当, 刘新泳*, 展鹏*.抗病毒药物研究中的生物无机化学策略[J]. 药学学报, 2022,57(3): 576-592
2.徐淑静, 丁当, 张续杰, 刘新泳*, 展鹏*.抗病毒药物研究中的新靶标与新策略[J]. 药学学报, 2022,57(4): 903-916
3.李敬, 姜向毅, 徐淑静, 崔清华, 杜瑞坤, 康东伟, 展鹏, 荣立军, 刘新泳.冠状病毒抑制剂研究的药物化学策略[J]. 药学学报, 2020,55(4): 537-553
4.马悦, 魏粉菊, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(1):衣壳蛋白抑制剂[J]. 药学学报, 2020,55(4): 554-565
5.魏粉菊, 马悦, 俞霁, 贾海永, 刘新泳, 展鹏.基于新靶标的HBV抑制剂研究进展(2):RNase H及其他靶标[J]. 药学学报, 2020,55(4): 566-574
6.魏文秀, 荆兰兰, 刘新泳, 展鹏.抗疱疹病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 575-584
7.李敬, 刘新泳, 展鹏.人巨细胞病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 585-596
8.徐淑静, 刘新泳, 展鹏.呼吸道合胞病毒抑制剂研究新进展[J]. 药学学报, 2020,55(4): 597-610
9.修思雨, 张健, 鞠翰, 贾瑞芳, 黄兵, 展鹏, 刘新泳.抗流感病毒药物靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2020,55(4): 611-626
10.李卓, 贾瑞芳, 展鹏, 刘新泳.寨卡病毒抑制剂研究新进展[J]. 药学学报, 2020,55(4): 627-639
11.董悦, 展鹏, 刘新泳.抗诺如病毒药物及其疫苗研究新进展[J]. 药学学报, 2020,55(4): 640-651
12.宋淑, 高萍, 展鹏, 刘新泳.丙型肝炎病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 652-668
13.任玉洁, 张硕, 魏粉菊, 刘新泳, 展鹏.埃博拉病毒抑制剂研究新进展[J]. 药学学报, 2020,55(4): 694-702
14.孙彦莹, 左晓芳, 展鹏, 刘新泳.抗腺病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 720-733
15.张涛, 周忠霞, 展鹏, 刘新泳.抗痘病毒药物化学研究新进展[J]. 药学学报, 2020,55(4): 734-743
16.陶昱岑, 郝霞, 刘新泳, 展鹏.抗肠病毒71型药物化学新进展[J]. 药学学报, 2020,55(4): 744-753
17.姜向毅, 李敬, 魏晓颖, 展鹏, 刘新泳.基孔肯雅病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 754-762
18.梁瑞鹏, 赵彤, 展鹏, 刘新泳.西尼罗病毒抑制剂研究进展[J]. 药学学报, 2020,55(4): 763-772
19.唐克, 张晓雨, 陈勍, 郭颖.沙粒病毒进入宿主细胞阻断剂3,5,6,7,4'-五甲氧基黄酮的发现及机制研究[J]. 药学学报, 2019,54(5): 838-845
20.康家雄, 朱江, 李爱秀, 靳玉瑞.化学合成类HIV整合酶和核糖核酸酶H双靶点抑制剂的研究进展[J]. 药学学报, 2019,54(8): 1392-1401
21.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
22.张晓雨, 唐克, 郭家梅, 陈勍, 郭颖.沙粒病毒进入抑制剂体外药效学评价模型的建立[J]. 药学学报, 2018,53(5): 735-742
23.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
24.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
25.王萍, 张高红, 向思颖, 杨柳萌, 唐成润, 马晓东, 郑永唐.二甲苯酮类非核苷类逆转录酶抑制剂的体外抗HIV-1活性[J]. 药学学报, 2016,51(11): 1704-1710
26.姜心贝, 李艳萍, 李卓荣.HCV NS5A抑制剂研究进展[J]. 药学学报, 2016,51(9): 1378-1387
27.李俊, 王巍.HIV衣壳蛋白结构及其药物小分子研究进展[J]. 药学学报, 2015,50(9): 1088-1095
28.夏帅, 王茜, 刘叔文, 陆路, 姜世勃.多肽类中东呼吸系统综合征冠状病毒进入抑制剂的研究进展[J]. 药学学报, 2015,50(12): 1513-1519
29.陈勍, 郭颖.丝状病毒进入抑制剂的细胞水平评价体系的建立[J]. 药学学报, 2015,50(12): 1538-1544
30.关鑫磊, 姜凤超, 王悦, 吴鹏飞, 王芳, 陈建国.基于药效团模型的乙酰胆碱酯酶、聚腺苷二磷酸核糖聚合酶-1双靶点分子设计研究[J]. 药学学报, 2014,49(6): 819-823
31.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
32.马宇衡,徐波,崔景荣,杨振军,张亮仁,张礼和.三肽四氮唑类20S蛋白酶体抑制剂的设计、合成与活性研究[J]. 药学学报, 2012,47(4): 472-478
33.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
34.姜岩 刘新泳.结构蛋白Gag及其相关基因 (蛋白) 在HIV-1晚期复制的作用及其抑制剂[J]. 药学学报, 2010,45(2): 205-214
35.田兴涛 谢蓝.二芳基嘧啶类HIV-1非核苷类逆转录酶抑制剂研究进展[J]. 药学学报, 2010,45(2): 177-183
36.于生辉 谭艳梅 赵桂森.α, γ-二酮类HIV-1整合酶抑制剂研究进展[J]. 药学学报, 2010,45(2): 215-223
37.张兴权.抗艾滋病毒化疗药物的最新进展[J]. 药学学报, 2010,45(2): 194-204
38.刘思扬 庄道民 董如华 白 丽 李敬云.两种HIV非核苷类逆转录酶抑制剂耐药病毒株的体外选择和鉴定[J]. 药学学报, 2010,45(2): 241-246
39.张 超 曹颖莉 钟 武 肖军海 郭 颖.新型甲型H1N1流感病毒神经氨酸酶抑制剂细胞水平评价体系的建立[J]. 药学学报, 2010,45(3): 383-387
40.高丽梅 张胜华 易 红 蒋建东 宋丹青.苯甲酰脲类抗肿瘤β微管蛋白抑制剂药效团模型的构建与应用[J]. 药学学报, 2010,45(4): 462-466
41.陈文敏 刘新泳.LEDGF/p75:  抗HIV-1感染的新靶点及其抑制剂研究[J]. 药学学报, 2009,44(9): 953-960
42.汤湧;张大永;吴晓明.作用于Bcl-2家族抗凋亡亚族蛋白的小分子抑制剂的研究进展[J]. 药学学报, 2008,43(7): 669-677
43.郭焕芳;谢蓝.新型非核苷类HIV逆转录酶抑制剂DCK的研究进展[J]. 药学学报, 2008,43(10): 997-1002
44.曹颖莉;郭颖.应用假病毒技术研究HIV-1复制抑制剂[J]. 药学学报, 2008,43(3): 253-258
45.祝勇;童心玥;赵玥;陈卉;姜凤超.乙酰胆碱酯酶抑制剂药效团模型的构建[J]. 药学学报, 2008,43(3): 267-276
46.邓小强;向明礼;贾若;杨胜勇.选择性的激酶ATP竞争性抑制剂设计研究进展[J]. 药学学报, 2007,42(12): 1232-1236
47.张文婷;鄢浩;姜凤超.聚腺苷二磷酸核糖聚合酶-1抑制剂药效团模型的建立[J]. 药学学报, 2007,42(3): 279-285
48.王超;赵桂森.芳基β-二酮酸类HIV-1整合酶抑制剂研究进展[J]. 药学学报, 2006,41(9): 801-807
49.周婷;谢蓝;.HIV非核苷类逆转录酶抑制剂研究进展[J]. 药学学报, 2004,39(8): 666-672
50.谢麟;沈家祥;雷小平.阿奇霉素新衍生物的设计、合成及抗病毒活性[J]. 药学学报, 2002,37(12): 942-945
51.高琦;王琳;赵知中.非肽类HIV蛋白酶抑制剂的研究进展[J]. 药学学报, 1999,34(8): 635-640