药学学报, 2022, 57(5): 1312-1321
引用本文:
吴昊旻, 张杰, 骆敏倩, 蔡挺. 无定形固体分散体的溶出与吸收研究进展[J]. 药学学报, 2022, 57(5): 1312-1321.
WU Hao-min, ZHANG Jie, LUO Min-qian, CAI Ting. Recent progress on dissolution and absorption of amorphous solid dispersions[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1312-1321.

无定形固体分散体的溶出与吸收研究进展
吴昊旻1, 张杰1, 骆敏倩1, 蔡挺1,2*
1. 中国药科大学药学院, 江苏 南京 210009;
2. 中国药科大学, 天然药物活性组分与药效国家重点实验室, 江苏 南京 210009
摘要:
无定形固体分散体是提高难溶性药物生物利用度最有效的策略之一,但其易受到处方因素、制备工艺、存储条件和溶出条件等因素的影响从而在储存期或溶出过程中结晶,丧失溶出优势。此外,体内外环境的差异、表观浓度与透膜通量之间的差异、体内吸收过程的复杂性等影响因素使得无定形固体分散体的体外溶出不能完全准确预测体内吸收,给固体分散体产品开发带来了极大挑战。本文总结了关于无定形药物固体分散体溶出与吸收的研究进展,期望为难溶性药物无定形固体分散体制剂的开发提供参考。
关键词:    无定形固体分散体      难溶性药物      结晶      体外溶出      体内吸收     
Recent progress on dissolution and absorption of amorphous solid dispersions
WU Hao-min1, ZHANG Jie1, LUO Min-qian1, CAI Ting1,2*
1. School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
2. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
Abstract:
The amorphous solid dispersion is one of the most effective formulation approaches to enhance the oral bioavailability of poorly water-soluble drugs. However, the amorphous drugs tend to crystallize during storage or dissolution due to inadequate formulations, preparation techniques, storage and dissolution conditions, thus negating their advantages. Meanwhile, it is often difficult to establish in vitro-in vivo correlation for amorphous solid dispersions owing to the difference between dissolution media and physiological environments and between the apparent concentration and membrane transport flux, the dynamic process of the in vivo absorption, which put great challenges to the development of amorphous solid dispersion products. This review covers the recent progress on the mechanistic study of the in vitro dissolution and in vivo absorption of amorphous solid dispersions, aiming to provide guidance for the formulation development of poorly soluble drugs.
Key words:    amorphous solid dispersion    poorly soluble drug    crystallization    in vitro dissolution    in vivo absorption   
收稿日期: 2021-12-21
DOI: 10.16438/j.0513-4870.2021-1826
基金项目: 国家自然科学基金资助项目(81872813);江苏省杰出青年基金(BK20190029);江苏省自然科学基金(BK20200573);中国博士后科学基金资助项目(2020T130139ZX);天然药物活性组分与药效国家重点实验室创新研究项目(SKLNMZZ202031).
通讯作者: 蔡挺,Tel:86-25-83271123,E-mail:tcai@cpu.edu.cn
Email: tcai@cpu.edu.cn
相关功能
PDF(602KB) Free
打印本文
0
作者相关文章
吴昊旻  在本刊中的所有文章
张杰  在本刊中的所有文章
骆敏倩  在本刊中的所有文章
蔡挺  在本刊中的所有文章

参考文献:
[1] Bissaro M, Sturlese M, Moro S. The rise of molecular simulations in fragment-based drug design (FBDD):an overview[J]. Drug Discov Today, 2020, 25:1693-1701.
[2] Wang Z, Zhao W, Hao GF, et al. Automated synthesis:current platforms and further needs[J]. Drug Discov Today, 2020, 25:2006-2011.
[3] Parks JM, Smith JC. How to discover antiviral drugs quickly[J]. N Engl J Med, 2020, 382:2261-2264.
[4] Gala UH, Miller DA, Williams RO. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873:188319.
[5] Nair AR, Lakshman YD, Anand VSK, et al. Overview of extensively employed polymeric carriers in solid dispersion technology[J]. AAPS PharmSciTech, 2020, 21:309.
[6] Peltonen L, Strachan CJ. Degrees of order:a comparison of nanocrystal and amorphous solids for poorly soluble drugs[J]. Int J Pharm, 2020, 586:119492.
[7] Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery-an update[J]. Int J Pharm, 2018, 535:379-392.
[8] Alonzo DE, Zhang GGZ, Zhou D, et al. Understanding the behavior of amorphous pharmaceutical systems during dissolution[J]. Pharm Res, 2010, 27:608-618.
[9] Lv Y, Du G. Polymorphic Drugs (晶型药物)[M]. Beijing:People's Medical Publishing House, 2009:141-143.
[10] Zhang J, Cai T. Recent progress in manufacturing process of amorphous pharmaceutical solids[J]. Prog Pharm Sci (药学进展), 2018, 42:675-684.
[11] Li Y, Yu J, Hu S, et al. Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability:the case of chitosan-coated indomethacin[J]. Mol Pharm, 2019, 16:1305-1311.
[12] Gala U, Miller D, Williams RO. Improved dissolution and pharmacokinetics of abiraterone through kinetiSol® enabled amorphous solid dispersions[J]. Pharmaceutics, 2020, 12:357.
[13] Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, et al. pH-induced precipitation behavior of weakly basic compounds:determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties[J]. Pharm Res, 2012, 29:2738-2753.
[14] Indulkar AS, Box KJ, Taylor R, et al. pH-dependent liquid-liquid phase separation of highly supersaturated solutions of weakly basic drugs[J]. Mol Pharm, 2015, 12:2365-2377.
[15] Sugihara H, Taylor LS. Evaluation of pazopanib phase behavior following pH-induced supersaturation[J]. Mol Pharm, 2018, 15:1690-1699.
[16] Wilson V, Lou X, Osterling DJ, et al. Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution:phase behavior during dissolution, speciation, and membrane mass transport[J]. J Control Release, 2018, 292:172-182.
[17] Elkhabaz A, Moseson DE, Brouwers J, et al. Interplay of supersaturation and solubilization:lack of correlation between concentration-based supersaturation measurements and membrane transport rates in simulated and aspirated human fluids[J]. Mol Pharm, 2019, 16:5042-5053.
[18] Wang S, Liu C, Chen H, et al. Impact of surfactants on polymer maintained nifedipine supersaturation in aqueous solution[J]. Pharm Res, 2020, 37:113.
[19] Zhu L, Brian CW, Swallen SF, et al. Surface self-diffusion of an organic glass[J]. Phys Rev Lett, 2011, 106:256103.
[20] Que C, Lou X, Zemlyanov DY, et al. Insights into the dissolution behavior of ledipasvir-copovidone amorphous solid dispersions:role of drug loading and intermolecular interactions[J]. Mol Pharm, 2019, 16:5054-5067.
[21] Manchanda A, Li N, Bogner RH. Mechanisms for the slowing of desupersaturation of a weak acid at elevated pH[J]. Mol Pharm, 2020, 17:3759-3772.
[22] Schram CJ, Beaudoin SP, Taylor LS. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution[J]. Langmuir, 2015, 31:171-179.
[23] Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development[J]. Pharmacol Rev, 2013, 65:315.
[24] Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions[J]. J Pharm Sci, 2012, 101:1355-1377.
[25] Alhalaweh A, Bergström CAS, Taylor LS. Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations[J]. J Control Release, 2016, 229:172-182.
[26] Edueng K, Mahlin D, Gråsjö J, et al. Supersaturation potential of amorphous active pharmaceutical ingredients after long-term storage[J]. Molecules, 2019, 24:2731.
[27] Heng W, Wei Y, Zhou S, et al. Effects of temperature and ionic strength of dissolution medium on the gelation of amorphous lurasidone hydrochloride[J]. Pharm Res, 2019, 36:72.
[28] Newman A, Zografi G. What are the important factors that influence API crystallization in miscible amorphous API-excipient mixtures during long-term storage in the glassy state?[J]. Mol Pharm, 2022, 19:378-391.
[29] Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions:a review[J]. Drug Deliv, 2020, 27:110-127.
[30] Saboo S, Kestur US, Flaherty DP, et al. Congruent release of drug and polymer from amorphous solid dispersions:insights into the role of drug-polymer hydrogen bonding, surface crystallization, and glass transition[J]. Mol Pharm, 2020, 17:1261-1275.
[31] Amponsah-Efah KK, Demeler B, Suryanarayanan R. Characterizing drug-polymer interactions in aqueous solution with analytical ultracentrifugation[J]. Mol Pharm, 2020, 18:246-256.
[32] Hanada M, Jermain SV, Thompson SA, et al. Ternary amorphous solid dispersions containing a high-viscosity polymer and mesoporous silica enhance dissolution performance[J]. Mol Pharm, 2021, 18:198-213.
[33] Theil F, Anantharaman S, Kyeremateng SO, et al. Frozen in time:kinetically stabilized amorphous solid dispersions of nifedipine stable after a quarter century of storage[J]. Mol Pharm, 2017, 14:183-192.
[34] Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers[J]. J Control Release, 2015, 211:85-93.
[35] Ojo AT, Ma C, Lee PI. Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers[J]. Int J Pharm, 2020, 591:120005.
[36] Winslow CJ, Nichols BLB, Novo DC, et al. Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro[J]. Carbohydr Polym, 2018, 182:149-158.
[37] Zhang W, Noland R, Chin S, et al. Impact of polymer type, ASD loading and polymer-drug ratio on ASD tablet disintegration and drug release[J]. Int J Pharm, 2021, 592:120087.
[38] Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption[J]. Adv Drug Deliv Rev, 2016, 101:122-142.
[39] Ueda K, Yamamoto N, Higashi K, et al. Molecular mobility suppression of ibuprofen-rich amorphous nanodroplets by HPMC revealed by NMR relaxometry and its significance with respect to crystallization inhibition[J]. Mol Pharm, 2019, 16:4968-4977.
[40] Ueda K, Taylor LS. Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size[J]. J Control Release, 2021, 330:229-243.
[41] Lu J, Ormes JD, Lowinger M, et al. Impact of endogenous bile salts on the thermodynamics of supersaturated active pharmaceutical ingredient solutions[J]. Cryst Growth Des, 2017, 17:1264-1275.
[42] Chen Y, Wang S, Wang S, et al. Sodium lauryl sulfate competitively interacts with HPMC-AS and consequently reduces oral bioavailability of posaconazole/HPMC-AS amorphous solid dispersion[J]. Mol Pharm, 2016, 13:2787-2795.
[43] Heng W, Wei Y, Xue Y, et al. Gel formation induced slow dissolution of amorphous indomethacin[J]. Pharm Res, 2019, 36:159.
[44] Takano R, Maurer R, Jacob L, et al. Formulating amorphous solid dispersions:impact of inorganic salts on drug release from tablets containing itraconazole-HPMC extrudate[J]. Mol Pharm, 2020, 17:2768-2778.
[45] Agrawal A, Dudhedia M, Deng W, et al. Development of tablet formulation of amorphous solid dispersions prepared by hot melt extrusion using quality by design approach[J]. AAPS PharmSciTech, 2016, 17:214-232.
[46] Xi H, Ren J, Novak JM, et al. The effect of inorganic salt on disintegration of tablets with high loading of amorphous solid dispersion containing copovidone[J]. Pharm Res, 2020, 37:70.
[47] Szabó E, Záhonyi P, Brecska D, et al. Comparison of amorphous solid dispersions of spironolactone prepared by spray drying and electrospinning:the influence of the preparation method on the dissolution properties[J]. Mol Pharm, 2021, 18:317-327.
[48] Moseson DE, Parker AS, Beaudoin SP, et al. Amorphous solid dispersions containing residual crystallinity:influence of seed properties and polymer adsorption on dissolution performance[J]. Eur J Pharm Sci, 2020, 146:105276.
[49] Moseson DE, Corum ID, Lust A, et al. Amorphous solid dispersions containing residual crystallinity:competition between dissolution and matrix crystallization[J]. AAPS J, 2021, 23:69.
[50] Tian B, Zhang L, Pan Z, et al. A comparison of the effect of temperature and moisture on the solid dispersions:aging and crystallization[J]. Int J Pharm, 2014, 475:385-392.
[51] Chen Y, Lubach JW, Tang S, et al. Effect of counterions on dissolution of amorphous solid dispersions studied by surface area normalized dissolution[J]. Mol Pharm, 2021, 18:3429-3438.
[52] Tomar D, Singh PK, Hoque S, et al. Amorphous systems for delivery of nutraceuticals:challenges opportunities[J]. Crit Rev Food Sci Nutr, 2022, 62:1204-1221.
[53] Di L, Kerns EH. Drug-like Properties:Concepts, Structure Design and Methods from ADME to Toxicity Optimization[M]. Boston:Academic Press, 2015:48-55.
[54] Li N, Mosquera-Giraldo LI, Borca CH, et al. A comparison of the crystallization inhibition properties of bile salts[J]. Cryst Growth Des, 2016, 16:7286-7300.
[55] Enright EF, Joyce SA, Gahan CGM, et al. Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions[J]. Eur J Pharm Biopharm, 2020, 153:68-83.
[56] Van Den Abeele J, Kostantini C, Barker R, et al. The effect of reduced gastric acid secretion on the gastrointestinal disposition of a ritonavir amorphous solid dispersion in fasted healthy volunteers:an in vivo-in vitro investigation[J]. Eur J Pharm Sci, 2020, 151:105377.
[57] Raina SA, Zhang GGZ, Alonzo DE, et al. Impact of solubilizing additives on supersaturation and membrane transport of drugs[J]. Pharm Res, 2015, 32:3350-3364.
[58] Fan N, He Z, Ma P, et al. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions[J]. Carbohydr Polym, 2018, 181:543-550.
[59] Purohit HS, Trasi NS, Osterling DJ, et al. Assessing the impact of endogenously derived crystalline drug on the in vivo performance of amorphous formulations[J]. Mol Pharm, 2019, 16:3617-3625.
[60] Pas T, Verbert S, Appeltans B, et al. The influence of crushing amorphous solid dispersion dosage forms on the in-vitro dissolution kinetics[J]. Int J Pharm, 2020, 573:118884.
[61] Sironi D, Bauer-Brandl A, Brandl M, et al. The influence of liquid intake on the performance of an amorphous solid dispersion in rats[J]. Eur J Pharm Biopharm, 2020, 152:296-298.
[62] Litou C, Turner DB, Holmstock N, et al. Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state[J]. Eur J Pharm Sci, 2020, 149:105297.
[63] Liu C, Liu Z, Chen Y, et al. Oral bioavailability enhancement of β-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion[J]. Eur J Pharm Biopharm, 2018, 124:73-81.
[64] Gao H, Wang W, Dong J, et al. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design[J]. Eur J Pharm Biopharm, 2021, 158:336-346.
相关文献:
1.Ammar Ouahab 沈 雁 平其能 涂家生.可固化mPEG-PDLLA胶束作为载体的新型吲哚美辛口服给药系统的体外研究[J]. 药学学报, 2011,46(8): 997-1003