药学学报, 2022, 57(5): 1336-1343
引用本文:
朱子玉#, 虞远智#, 袁月, 张建军*. YZG-330通过P38 MAPK信号通路调节TRPM8离子通道发挥降温作用[J]. 药学学报, 2022, 57(5): 1336-1343.
ZHU Zi-yu#, YU Yuan-zhi#, YUAN Yue, ZHANG Jian-jun*. YZG-330 regulates the TRPM8 ion channel through the P38 MAPK signaling pathway to reduce body temperature in mice[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1336-1343.

YZG-330通过P38 MAPK信号通路调节TRPM8离子通道发挥降温作用
朱子玉#, 虞远智#, 袁月, 张建军*
中国医学科学院、北京协和医学院药物研究所, 新药作用机制研究和药效评价北京市重点实验室, 北京 100050
摘要:
实验室前期研究发现化合物YZG-330能够使小鼠降低体温,该作用可被腺苷A1受体(adenosine A1receptor,A1R)拮抗剂DPCPX拮抗,本文基于A1R下游信号通路对YZG-330的作用机制进行进一步探究。通过测量小鼠肛温进行YZG-330药效学评价;采用Western blot技术检测小鼠下丘脑组织匀浆中瞬时受体电位(transient receptor potential,TRP)离子通道和P38蛋白及其磷酸化水平;通过Ca2+荧光探针Fluo-3AM负载细胞,检测YZG-330对小鼠下丘脑细胞内Ca2+含量的影响。YZG-330可剂量依赖性地降低小鼠体温,P38选择性抑制剂SB-203580(20 mg·kg-1,i.p.)可显著抑制YZG-330的降温作用。TRPM8拮抗剂(每只小鼠0.1 μg,i.c.v.)可以部分拮抗YZG-330(0.25 mg·kg-1和1 mg·kg-1,i.p.)的降温效果。腹腔注射给予小鼠YZG-330(2 mg·kg-1,i.p.)可显著上调小鼠下丘脑组织中P38磷酸化水平,A1R拮抗剂DPCPX (5 mg·kg-1,i.g.)可有效抑制该变化;YZG-330还可显著上调小鼠下丘脑组织中TRPM8表达量,SB-203580可非常显著地抑制YZG-330引起的TRPM8上调;YZG-330(0.1~10 μmol·L-1)可剂量依赖性地升高小鼠下丘脑细胞内Ca2+浓度,A1R抑制剂DPCPX (0.5和1 μmol·L-1)与TRPM8拮抗剂(1 μmol·L-1)均可抑制YZG-330的升高胞内Ca2+浓度的作用。综上所述,YZG-330发挥降温作用的机制之一是通过激活A1R,促进P38蛋白磷酸化,进而上调TRPM8离子通道表达量并激活该通道开启,导致胞内Ca2+含量上升,通过负调节下丘脑体温调定点导致体温下降。本文中所有动物实验均获得中国医学科学院药物研究所伦理委员会批准。
关键词:    腺苷A1受体      丝裂原活化蛋白激酶P38      瞬时受体电位离子通道亚家族8      Ca2+离子     
YZG-330 regulates the TRPM8 ion channel through the P38 MAPK signaling pathway to reduce body temperature in mice
ZHU Zi-yu#, YU Yuan-zhi#, YUAN Yue, ZHANG Jian-jun*
Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Preliminary research in our laboratory found that compound YZG-330 can reduce mouse body temperature, which could be blocked by adenosine A1 receptor (A1R) antagonist DPCPX. Based on the downstream signaling pathway of the A1R, the mechanism by which YZG-330 lowers body temperature was further studied. The pharmacodynamics of YZG-330 was evaluated by measuring the rectal temperature; expression of the transient receptor potential (TRP) ion channel, the P38 protein and its phosphorylated form in mouse hypothalamic homogenate were detected by Western blotting. A Ca2+ fluorescent probe, Fluo-3AM, was added to cells to detect the effect of YZG-330 on the Ca2+ content of mouse hypothalamic cells. YZG-330 dose-dependently reduced the body temperature in mice, and the selective P38 inhibitor SB-203580 (20 mg·kg-1, i.p.) significantly inhibited the hypothermic effect of YZG-330. A TRPM8 antagonist 2 (0.1 μg per mouse, i.c.v.) markedly attenuated the hypothermic effect of YZG-330 (0.25 or 1 mg·kg-1, i.p.). YZG-330 (2 mg·kg-1, i.p.) significantly increased the phosphorylation of P38, an effect that could be attenuated by the A1R antagonist DPCPX (5 mg·kg-1, i.g.) in mouse hypothalamus. In addition, YZG-330 also prominently enhanced the expression of TRPM8, which could be blocked by SB-203580; YZG-330 (0.1-10 μmol·L-1) increased intracellular Ca2+ concetration in mouse hypothalamic cells in a dose-dependent manner, and was inhibited by the A1R inhibitor DPCPX (0.5 and 1 μmol·L-1) and TRPM8 antagonist 2 (1 μmol·L-1). In conclusion, YZG-330 exerts its hypothermic effect by activating the A1R to promote the phosphorylation of P38 protein and thereby up-regulating the expression and activity of the TRPM8 ion channel, resulting in increased intracellular Ca2+ concentration to stimulate mouse hypothalamus cells to down-regulate body temperature. All animal experiments were approved by the Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Sciences.
Key words:    adenosine A1 receptor    P38 MAPK    transient receptor potential M8    Ca2+ ion   
收稿日期: 2021-10-14
DOI: 10.16438/j.0513-4870.2021-0664
基金项目: 国家自然科学基金项目资助(81773715);中国医学科学院创新工程项目(2021-I2M-1-028).
通讯作者: 张建军,Tel:13522110127,E-mail:jjzhang@imm.ac.cn
Email: jjzhang@imm.ac.cn
相关功能
PDF(599KB) Free
打印本文
0
作者相关文章
朱子玉#  在本刊中的所有文章
虞远智#  在本刊中的所有文章
袁月  在本刊中的所有文章
张建军*  在本刊中的所有文章

参考文献:
[1] Swoap SJ, Bingaman MJ, Hult EM, et al. Alternate-day feeding leads to improved glucose regulation on fasting days without significant weight loss in genetically obese mice[J]. Am J Physiol Regul Integr Comp Physiol, 2019, 317:R461-R469.
[2] Gavrilova O, Leon LR, Marcus-Samuels B, et al. Torpor in mice is induced by both leptin-dependent and -independent mechanisms[J]. Proc Natl Acad Sci U S A, 1999, 96:14623-14628.
[3] Bolze F, Morath V, Bast A, et al. Long-acting PASylated leptin ameliorates obesity by promoting satiety and preventing hypo-metabolism in leptin-deficient Lep (ob/ob) mice[J]. Endocrinology, 2016, 157:233-244.
[4] Province HS, Xiao C, Mogul AS, et al. Activation of neuronal adenosine A1 receptors causes hypothermia through central and peripheral mechanisms[J]. PLoS One, 2020, 15:e0243986.
[5] Kan HW, Chang CH, Lin CL, et al. Downregulation of adeno-sine and adenosine A1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy[J]. Pain, 2018, 159:1580-1591.
[6] Jia SB, Zhang Y, Shi JG, et al. Central-adenosine A1 receptor involved in the thermal regulation effect of YZG-330, a N6-substituted adenosine derivative, in mice[J]. Acta Pharm Sin (药学学报), 2015, 50:690-696.
[7] Zong KQ, Ma ZC, Gao Y. Progress in research on effects of adenosine A1 receptors[J]. Chin Pharmacol Bull (中国药理学通报), 2008, 24:573-576.
[8] Raman M, Chen W, Cobb MH. Differential regulation and pro-perties of MAPKs[J]. Oncogene, 2007, 26:3100-3112.
[9] Mizushima T, Obata K, Katsura H, et al. Noxious cold stimulation induces mitogen-activated protein kinase activation in transient receptor potential (TRP) channels TRPA1-and TRPM8-containing small sensory neurons[J]. Neuroscience, 2006, 140:1337-1348.
[10] Cheng W, Liu J, Sun CS, et al. Research progress of temperature-sensitive TRP channels as drug targets for neuropathic pain[J]. Prog Physiol Sci (生理科学进展), 2012, 43:125-130.
[11] Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels[J]. Annu Rev Physiol, 2006, 68:619-647.
[12] Almeida MC, Vizin RCL, Carrettiero DC. Current understanding on the neurophysiology of behavioral thermoregulation[J]. Temperature, 2015, 2:483-490.
[13] Liu CL, Su HC, Wan HY, et al. Forsythoside A exerts antipyretic effect on yeast-induced pyrexia mice via inhibiting transient receptor potential vanilloid 1 function[J]. Int J Biol Sci, 2017, 13:65-75.
[14] Xue XL, Xing FY, Wang SQ, et al. The effect of hypothermia on the content of neuropeptides and other active substances in rat plasma and different brain regions[J]. Chin J Pathophysiol (中国病理生理杂志), 2002, 18:100-103.
[15] Merighi S, Benini A, Mirandola P, et al. A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells[J]. J Biol Chem, 2005, 280:19516-19526.
[16] Haas HL, Selbach O. Functions of neuronal adenosine receptors[J]. Naunyn Schmiedebergs Arch Pharmacol, 2000, 362:375-381.
[17] Asada R, Kanemoto S, Matsuhisa K, et al. IRE1α-XBP1 is a novel branch in the transcriptional regulation of UCP1 in brown adipocytes[J]. Sci Rep, 2015, 5:16580.