药学学报, 2022, 57(5): 1352-1360
引用本文:
孙姝婵, 龚迪菲, 袁天翊, 王守宝, 方莲花*, 杜冠华*. 葛根素通过改善线粒体呼吸功能减轻血管内皮细胞氧化损伤[J]. 药学学报, 2022, 57(5): 1352-1360.
SUN Shu-chan, GONG Di-fei, YUAN Tian-yi, WANG Shou-bao, FANG Lian-hua*, DU Guan-hua*. Puerarin reduces oxidative damage to vascular endothelial cells by improving mitochondrial respiratory function[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1352-1360.

葛根素通过改善线粒体呼吸功能减轻血管内皮细胞氧化损伤
孙姝婵, 龚迪菲, 袁天翊, 王守宝, 方莲花*, 杜冠华*
中国医学科学院、北京协和医学院药物研究所, 药物靶点研究与新药筛选北京市重点实验室, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
本研究旨在探究黄酮类化合物葛根素对过氧化氢(H2O2)诱导损伤的人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVEC)的影响及其机制。采用体外培养HUVEC细胞,设立空白组、模型组(H2O2 400 μmol·L-1)、不同浓度葛根素组(3、10、30、100 μmol·L-1)。采用葛根素预孵育2 h,H2O2损伤HUVEC细胞24 h。CCK-8法检测细胞活力,Transwell小室观察细胞迁移能力,以JC-1为荧光探针检测线粒体膜电位。O2k线粒体功能检测系统测定线粒体呼吸功能。RT-PCR实验技术分析细胞中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-1β(interleukin-1β,IL-1β)和白细胞介素-18(interleukin-18,IL-18)的mRNA表达水平;Western blot检测细胞焦亡相关蛋白氮端gasdermin D (N-GSDMD)、裂解天冬氨酸特异蛋白酶-1(cleaved-cysteinyl aspartate specific proteinase-1,cleaved-caspase-1)、核苷酸结合寡聚化结构域样受体蛋白3(NOD-like receptor protein 3,NLRP3)和嘌呤能离子通道型受体7(purinergic ligand-gated ion channel 7 receptor,P2X7R)的表达水平。结果显示,400 μmol·L-1 H2O2处理24 h对HUVEC细胞有明显的损伤作用,与模型组比较,葛根素能够浓度依赖性地提高细胞活力,其中30和100 μmol·L-1效果最为显著;葛根素能够显著降低线粒体膜电位,改善线粒体呼吸功能,抑制H2O2诱导的细胞迁移,降低炎性因子的表达,下调焦亡相关蛋白的表达。上述研究结果表明,葛根素能够抑制HUVEC细胞的迁移,减轻H2O2诱导的HUVEC氧化损伤,其机制可能与改善线粒体呼吸功能、抑制细胞焦亡有关。
关键词:    葛根素      人脐静脉内皮细胞      作用机制      线粒体      细胞焦亡     
Puerarin reduces oxidative damage to vascular endothelial cells by improving mitochondrial respiratory function
SUN Shu-chan, GONG Di-fei, YUAN Tian-yi, WANG Shou-bao, FANG Lian-hua*, DU Guan-hua*
Beijing Key Laboratory of Drug Targets Identification and Drug Screening, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
This study investigated the effect of puerarin on human umbilical vein endothelial cells (HUVEC) injured with hydrogen peroxide (H2O2). HUVEC were divided into three groups:a control group, a model group (H2O2 400 μmol·L-1) and a puerarin-treated group (3, 10, 30 and 100 μmol·L-1). HUVEC were cultured with varied concentration of puerarin for 2 h and treated with H2O2 for another 24 h. Cell proliferation was detected by a CCK-8 assay. The mitochondrial membrane potential was measured by a JC-1 fluorescent probe. A transwell chamber assay was adopted to observe cell migration ability. Mitochondrial respiratory function was measured in a two-chamber titration injection respirometer (Oxygraph-2k). The expression of interleukin-1β (IL-1β), interleukin-18 (IL-18) and tumor necrosis factor-α (TNF-α) was detected by quantitative real-time PCR. The expression of pyroptosis-mediated proteins, including cleaved-cysteinyl aspartate-specific proteinase-1 (caspase-1), N-gasdermin D (N-GSDMD), NOD-like receptor protein 3 (NLRP3) and purinergic ligand-gated ion channel 7 receptor (P2X7R) was detected by Western blot. The results show that 400 μmol·L-1 H2O2 treatment for 24 h causes obvious damage to HUVEC. Compared with the model group, puerarin protected against cellular injury in a dose-dependent manner, with the greatest effect at a dose of 30 and 100 μmol·L-1. Puerarin significantly decreased the mitochondrial membrane potential and improved mitochondrial function. Puerarin inhibited cell migration induced by H2O2, suppressed the expression of IL-1β, IL-18 and TNF-α, and down-regulated the pyroptosis-mediated protein. These changes are statistically significant (P < 0.05). These findings demonstrate that puerarin has a protective effect against H2O2-induced oxidative damage of HUVEC by inhibiting the migration of HUVEC cells. The mechanism may be related to improved mitochondrial respiratory function and inhibition of pyroptosis.
Key words:    puerarin    human umbilical vein endothelial cell    mechanism    mitochondria    pyroptosis   
收稿日期: 2021-11-05
DOI: 10.16438/j.0513-4870.2021-1590
基金项目: 国家自然科学基金资助项目(81773935,82073853);中国医学科学院医学与健康科技创新工程项目(2021-I2M-1-005).
通讯作者: 方莲花,Tel:86-10-63165313,E-mail:fanglh@imm.ac.cn;杜冠华,Tel:86-10-63165184,E-mail:dugh@imm.ac.cn
Email: fanglh@imm.ac.cn;dugh@imm.ac.cn
相关功能
PDF(941KB) Free
打印本文
0
作者相关文章
孙姝婵  在本刊中的所有文章
龚迪菲  在本刊中的所有文章
袁天翊  在本刊中的所有文章
王守宝  在本刊中的所有文章
方莲花*  在本刊中的所有文章
杜冠华*  在本刊中的所有文章

参考文献:
[1] Wei DH, Deng JL, Shi RZ, et al. Epimedin C protects H2O2-induced peroxidation injury by enhancing the function of endothelial progenitor HUVEC populations[J]. Biol Pharm Bull, 2019, 42:1491-1499.
[2] Yan JH, Wu QY, Luo SX, et al. A detailed protocol to cultivate and identify human umbilical endothelial cells[J]. J Xinjiang Med Univ (新疆医科大学学报), 2016, 39:555-559.
[3] Davidson SM, Duchen MR. Endothelial mitochondria:contributing to vascular function and disease[J]. Circ Res, 2007, 100:1128-1141.
[4] Chandel NS. Mitochondria as signaling organelles[J]. BMC Biol, 2014, 12:1-7.
[5] Zhu Z, Shi Z, Xie C, et al. A novel mechanism of γ-aminobutyric acid (GABA) protecting human umbilical vein endothelial cells (HUVECs) against H2O2-induced oxidative injury[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2019, 217:68-75.
[6] Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular diseases[J]. Int Immunopharmacol, 2019, 67:311-318.
[7] Bian Y, Li X, Pang P, et al. Kanglexin, a novel anthraquinone compound, protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis[J]. Acta Pharmacol Sin, 2020, 41:319-326.
[8] Ma YJ, Xu M. The role of pyroptosis in the macrovascular complications of diabetes[J]. Acta Pharm Sin (药学学报), 2022, 57:884-891.
[9] Lei Q, Yi T, Chen C. NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3(NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction[J]. Med Sci Monit, 2018, 24:6044-6052.
[10] Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases[J]. Immunobiology, 2020, 225:151884.
[11] Haybar H, Shahrabi S, Rezaeeyan H, et al. Endothelial cells:from dysfunction mechanism to pharmacological effect in cardiovascular disease[J]. Cardiovasc Toxicol, 2019, 19:13-22.
[12] Shibata S, Murakami T, Nishikawa Y, et al. The constituents of pueraria root[J]. Chem Pharm Bull, 1959, 7:134-136.
[13] Li XG, Yuan TY, Chen D, et al. Cardioprotective effects of puerarin-V on isoproterenol-induced myocardial infarction mice is associated with regulation of PPAR-Υ/NF-κB pathway[J]. Molecules, 2018, 23:3322.
[14] Tang F, Yan HL, Wang LX, et al. Review of natural resources with vasodilation:traditional medicinal plants, natural products, and their mechanism and clinical efficacy[J]. Front Pharmacol, 2021, 12:627458.
[15] Zhang J, Chen YQ, Gao WP. Puerarin protects against human retinal endothelial cells injury induced by high glucose via regulating miR-16-5p/CASP1 axis[J]. Gen Physiol Biophys, 2021, 40:235-243.
[16] Qin W, Wu T, Xiao YC, et al. Puerarin injection for unstable angina pectoris[J]. Cochrane Database Syst Rev, 2006, 3:CD004196.
[17] Yan T, Ming L, Bo W. Puerarin for acute ischaemic stroke[J]. Cochrane Database Syst Rev, 2008, 23:CD004955.
[18] Rossman MJ, Kaplon RE, Hill SD, et al. Endothelial cell senescence with aging in healthy humans:prevention by habitual exercise and relation to vascular endothelial function[J]. Am J Physiol Heart Circ Physiol, 2017, 313:H890-H895.
[19] Lane-Cordova AD, Phillips SA, Baynard T, et al. Effects of ageing and physical activity on blood pressure and endothelial function during acute inflammation[J]. Exp Physiol, 2016, 101:962-971.
[20] Stone JR, Collins T. The role of hydrogen peroxide in endothelial proliferative responses[J]. Endothelium, 2002, 9:231-238.
[21] Ricard N, Bailly S, Guignabert C, et al. The quiescent endothelium:signalling pathways regulating organ-specific endothelial normalcy[J]. Nat Rev Cardiol, 2021, 18:565-580.
[22] Tawa M, Shimosato T, Sakonjo H, et al. Responsiveness of coronary arteries to nitroglycerin under hypoxia:the importance of the endothelium[J]. Pharmacology, 2017, 99:275-280.
[23] Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition[J]. Sci Signal, 2014, 7:re8.
[24] Kalpage HA, Bazylianska V, Recanati MA, et al. Tissue-specific regulation of cytochrome c by post-translational modifications:respiration, the mitochondrial membrane potential, ROS, and apoptosis[J]. FASEB J, 2019, 33:1540-1553.
[25] Wiegman CH, Michaeloudes C, Haji G, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2015, 136:769-780.
[26] Li Q, Shi N, Cai C, et al. The role of mitochondria in pyroptosis[J]. Front Cell Dev Biol, 2021, 8:630771.
[27] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death:recommendations of the nomenclature committee on cell death 2018[J]. Cell Death Differ, 2018, 25:486-541.
相关文献:
1.江爽, 韩燕星, 蒋建东, 王玉红*.葛根素抗动脉粥样硬化作用及其机制的研究进展[J]. 药学学报, 2021,56(4): 966-971