药学学报, 2022, 57(5): 1367-1374
李相花, 战歌, 李加欣, 任家成, 樊攀, 李宝馨. 靶向hERG通道评价羟基吴茱萸次碱的心脏安全性[J]. 药学学报, 2022, 57(5): 1367-1374.
LI Xiang-hua, ZHAN Ge, LI Jia-xin, REN Jia-cheng, FAN Pan, LI Bao-xin. Evaluation of cardiac safety of hydroxyrutaecarpine, hERG channel inhibitor[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1367-1374.

李相花1, 战歌1, 李加欣1, 任家成1, 樊攀2*, 李宝馨1*
1. 哈尔滨医科大学药学院, 黑龙江 哈尔滨 150081;
2. 哈尔滨医科大学附属第二临床医院, 黑龙江 哈尔滨 150081
药物诱发长QT间期综合征(long QT syndrome,LQTS)已成为临床上重要的研究课题,其中获得性长QT间期综合征(acLQTS)的发生主要是药物抑制人类ether-α-go-go相关基因(the human ether-α-go-go related gene,hERG)通道所致。hERG基因编码快速激活延迟整流钾离子通道(rapid component of the delayed rectifier potassium current,Ikr)的α亚基,其在动作电位3期复极过程中发挥重要作用,也是大多数抗心律失常药物作用的靶点。本文旨在探讨羟基吴茱萸次碱(hydroxyrutaecarpine,HRU)对hERG通道的影响,评估其心脏安全性。利用全细胞膜片钳技术记录HRU对hERG通道电流及动力学的影响,并验证与hERG通道的结合位点。运用PCR技术测定HRU对hERG mRNA表达水平的影响。利用Western blot技术检测HRU对hERG蛋白和转录因子Sp1(specificity protein 1)表达的影响。采用免疫荧光技术证实HRU对hERG蛋白和转录因子Sp1的定位和表达的影响。研究显示,HRU瞬时给药后对hERG电流具有抑制作用,降低hERG通道的失活电流,缩小失活时间常数,作用位点是S6片段的两个芳香族氨基酸即第656位的苯丙氨酸F656和第652位的酪氨酸Y652。HRU孵育给药能够减少hERG蛋白表达量,并抑制hERG电流,降低hERG mRNA的水平,降低细胞核内转录因子Sp1和细胞浆内hERG蛋白表达水平。激光扫描共聚焦实验也显示细胞核内转录因子Sp1和细胞浆内hERG蛋白表达都减少,说明HRU抑制Sp1表达是导致hERG mRNA表达减少的原因。以上结果表明,HRU瞬时给药抑制hERG电流的作用是通过结合hERG通道内F656和Y652位点,缩小失活时间常数,加快通道失活,从而抑制hERG通道功能。此外,HRU还抑制hERG蛋白表达,主要是通过抑制转录因子Sp1的表达,使hERG通道蛋白的转录功能下调,最终导致hERG蛋白减少。
关键词:    羟基吴茱萸次碱      hERG通道      转录因子Sp1      获得性长QT间期综合症      心律失常     
Evaluation of cardiac safety of hydroxyrutaecarpine, hERG channel inhibitor
LI Xiang-hua1, ZHAN Ge1, LI Jia-xin1, REN Jia-cheng1, FAN Pan2*, LI Bao-xin1*
1. College of Pharmacy, Harbin Medical University, Harbin 150081, China;
2. The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
Drug-induced long QT syndrome (LQTS) has become an important clinical research topic, and the occurrence of acquired long QT syndrome (acLQTS) is mainly caused by drug inhibition of the human ether-α-go-go related gene (hERG) channel. The hERG gene encodes the α subunit of the fast-activating delayed rectifying potassium ion channel (Ikr), which plays an important role in the process of action potential phase 3 repolarization and is also the target of most antiarrhythmic drugs. The purpose of this study was to investigate the effect of hydroxyrutaecarpine (HRU) on the hERG channel and to evaluate its cardiotoxicity. The whole cell patch clamp technique was used to detect the effects of HRU on the current and kinetics of the hERG channel, and to confirm the binding site on the hERG channel. PCR was used to determine the effect of HRU on hERG mRNA expression. Western blotting was used to detect the effects of HRU on the expression of hERG protein and transcription factor Sp1. Immunofluorescence was used to confirm the effects of HRU on localization and expression of hERG protein and transcription factor Sp1. Studies have shown that transient HRU can inhibit hERG current and shorten the inactivation time constant. Its binding sites to the hERG channel are F656 and Y652. After incubation for 24 h, HRU can reduce the expression of hERG protein, inhibit the hERG current, reduce the level of hERG mRNA, and reduce the expression of transcription factor Sp1 in the nucleus and hERG protein in the cytoplasm. Immunofluorescence experiments also showed the same results suggesting that the inhibition of Sp1 expression by HRU is the cause of the decreased expression of hERG mRNA. In conclusion, the acute inhibition of HRU accelerates the channel inactivation process and reduces the inactivation time constant by binding to the F656 and Y652 sites in the hERG channel, thus reducing the hERG current. In addition, HRU also inhibits the expression of hERG protein, mainly by inhibiting the expression of transcription factor Sp1, the transcription function of hERG channel protein is down-regulated, so that the hERG protein is reduced.
Key words:    hydroxyrutaecarpine    hERG    transcription factor Sp1    acquired long QT syndrome    arrhythmia   
收稿日期: 2021-11-26
DOI: 10.16438/j.0513-4870.2021-1690
基金项目: 国家自然科学基金资助项目(81673636).
通讯作者: 樊攀,Tel:86-451-86605704,E-mail:aprilfanpan@126.com;李宝馨,Tel:86-451-86671354,E-mail:libaoxin@ems.hrbmu.edu.cn
Email: aprilfanpan@126.com;libaoxin@ems.hrbmu.edu.cn
PDF(711KB) Free
李相花  在本刊中的所有文章
战歌  在本刊中的所有文章
李加欣  在本刊中的所有文章
任家成  在本刊中的所有文章
樊攀  在本刊中的所有文章
李宝馨  在本刊中的所有文章

[1] Fitzgerald P, Ackerman M. Drug-induced torsades de pointes:the evolving role of pharmacogenetics[J]. Heart Rhythm, 2005, 2:S30-S37.
[2] Jonsson M, van der Heyden M, van Veen T. Deciphering hERG channels:molecular basis of the rapid component of the delayed rectifier potassium current[J]. J Mol Cell Cardiol, 2012, 53:369-374.
[3] Butler A, Helliwell M, Zhang Y, et al. An update on the structure of hERG[J]. Front Pharmacol, 2019, 10:1572.
[4] Zhang Y, Colenso C, El Harchi A, et al. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking[J]. Biochem Pharmacol, 2016, 113:24-35.
[5] Al-Moubarak E, Sharifi M, Hancox J. In silico exploration of interactions between potential COVID-19 antiviral treatments and the pore of the hERG potassium channel-A drug antitarget[J]. Front Cardiovasc Med, 2021, 8:645172.
[6] Liu T, Liu J, Lu H, et al. Utility of normalized TdP score system in drug proarrhythmic potential assessment:a blinded in vitro study of CiPA drugs[J]. Clin Pharmacol Ther, 2021, 109:1606-1617.
[7] Fogli Iseppe A, Ni H, Zhu S, et al. Sex-specific classification of drug-induced torsade de pointes susceptibility using cardiac simulations and machine learning[J]. Clin Pharmacol Ther, 2021, 110:380-391.
[8] Ridder B, Leishman D, Bridgland-Taylor M, et al. Corrigendum to "a systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm"[J]. Toxicol Appl Pharmacol, 2020, 395:114983.
[9] Chen JJ, Fang HY, Duh CY, et al. New indolopyridoquinazoline, benzo[c] phenanthridines and cytotoxic constituents from Zanthoxylum integrifoliolum[J]. Planta Med, 2005, 71:470-475.
[10] Li M, Wang C. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the fruit of Tetradium ruti-carpum:a review[J]. J Ethnopharmacol, 2020, 263:113231.
[11] Baburin I, Varkevisser R, Schramm A, et al. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo[J]. Pharmacol Res, 2018, 131:150-163.
[12] Knape K, Linder T, Wolschann P, et al. In silico analysis of conformational changes induced by mutation of aromatic binding residues:consequences for drug binding in the hERG K+ channel[J]. PLoS One, 2011, 6:e28778.
[13] Kudaibergenova M, Guo J, Khan H, et al. Allosteric coupling between drug binding and the aromatic cassette in the pore domain of the hERG1 channel:implications for a state-dependent blockade[J]. Front Pharmacol, 2020, 11:914.
[14] Trott O, Olson AJ. AutoDock Vina:improving the speed and accu-racy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31:455-461.
[15] Zhan G, Wang F, Ding YQ, et al. Rutaecarpine targets hERG channels and participates in regulating electrophysiological pro-perties leading to ventricular arrhythmia[J]. J Cell Mol Med, 2021, 25:4938-4949.
[16] Feng P, Zhang B, Zhao L, et al. Intracellular mechanism of rosuvastatin-induced decrease in mature hERG protein expression on membrane[J]. Mol Pharm, 2019, 16:1477-1488.
[17] Hu H, Zhou S, Sun X, et al. A potent antiarrhythmic drug N-methyl berbamine extends the action potential through inhibiting both calcium and potassium currents[J]. J Pharmacol Sci, 2020, 142:131-139.
[18] Li Y, Tu D, Xiao H, et al. Aconitine blocks HERG and Kv1.5 potassium channels[J]. J Ethnopharmacol, 2010, 131:187-195.
[19] Zhang BG, Liu QF. Zuojin pill is newly used in modern clinic[J]. Chin Tradit Pat Med (中成药), 2010, 32:1408-1411.
[20] Xu LD, Zhang YX, Zheng YH. Observation on therapeutic effect of acupoint sticking at Neiguan (PC 6) and Xinshu (BL 15) for treatment of bradycardia[J]. Chin Acupunct Moxib (中国针灸), 2010, 30:192-194.
[21] Yan Q, Shan Y, Yin M, et al. Phytochemical and chemotaxonomic study on Evodia rutaecarpa var. officinalis[J]. Biochem Syst Ecol, 2020, 88:103961.
[22] Zhang Y, Dong Z, Jin L, et al. Arsenic trioxide-induced hERG K+ channel deficiency can be rescued by matrine and oxymatrine through up-regulating transcription factor Sp1 expression[J]. Biochem Pharmacol, 2013, 85:59-68.