药学学报, 2022, 57(5): 1375-1386
引用本文:
温海梅, 王思源, 王亚茹, 邢凤丽, 陈勇, 蔡文涛*. 基于网络药理学探讨丹参抗乙肝病毒的活性成分与作用机制[J]. 药学学报, 2022, 57(5): 1375-1386.
WEN Hai-mei, WANG Si-yuan, WANG Ya-ru, XING Feng-li, CHEN Yong, CAI Wen-tao*. Investigation on anti-hepatitis B virus active components and mechanism of Salvia miltiorrhiza based on network pharmacology[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1375-1386.

基于网络药理学探讨丹参抗乙肝病毒的活性成分与作用机制
温海梅, 王思源, 王亚茹, 邢凤丽, 陈勇, 蔡文涛*
湖北大学生命科学学院, 药物高通量筛选技术国家地方联合工程研究中心, 省部共建生物催化与酶工程国家重点实验室, 中药生物技术湖北省重点实验室, 湖北 武汉 430062
摘要:
应用网络药理学方法预测了丹参抗乙肝病毒(hepatitis B virus,HBV)的活性成分和作用机制。首先通过TCMSP、PubChem数据库及文献调研获取丹参的化学成分,通过SwissTargetPrediction和GeneCards数据库分别预测活性成分和HBV感染所对应的潜在作用靶点。使用String数据库构建蛋白互作关系网络、Cytoscape软件将成分-作用靶点网络可视化并进行拓扑学分析、DAVID平台进行GO功能及KEGG通路富集分析、AutoDock Vina软件将丹参关键活性成分与核心靶蛋白进行分子对接。共筛选出38种活性成分,获得疾病-化合物交集靶点178个,富集分析得到405个GO相关条目、68条相关信号通路(涉及T细胞/B细胞受体信号通路、PI3K/AKT信号通路及mTOR信号通路等)。分子对接结果显示,丹参大多数关键活性成分(丹参醌酚Ⅱ、丹参新酮、原儿茶酸、紫草酸和原儿茶醛)与核心靶点(PIK3CA、APP、STAT3、AKT1和mTOR)具有较好的亲和力。更进一步,在HBV复制小鼠模型上考察了丹参代表性活性成分紫草酸的抗HBV活性及对PI3K/AKT和mTOR信号通路的调控作用。动物福利和实验操作均遵循湖北大学动物伦理与福利委员会的规定。结果显示,紫草酸能明显抑制模型小鼠的HBV DNA复制,降低血清HBsAg和HBeAg水平,抑制肝脏AKT和mTOR的磷酸化,表明紫草酸可能通过调控PI3K/AKT及mTOR信号通路发挥抗HBV作用。
关键词:    网络药理学      丹参      抗乙肝病毒活性      作用机制      紫草酸     
Investigation on anti-hepatitis B virus active components and mechanism of Salvia miltiorrhiza based on network pharmacology
WEN Hai-mei, WANG Si-yuan, WANG Ya-ru, XING Feng-li, CHEN Yong, CAI Wen-tao*
National and Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China
Abstract:
We predicted the anti-hepatitis B virus (HBV) active components and mechanism of Salvia miltiorrhiza based on network pharmacology. The active components of S. miltiorrhiza were obtained through TCMSP, PubChem database and literature research. The potential targets of the active components and HBV infection were predicted by SwissTargetPrediction and GeneCards databases, respectively. The protein-protein interaction (PPI) network was constructed by String database. Cytoscape software was adopted to construct a visual network of active component-disease target and perform topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using DAVID platform. The molecular docking of key components and core targets was carried out by AutoDock Vina software. We screened out a total of 38 active components and 178 disease-component overlapping targets. Enrichment analyses obtained 405 related GO items and 68 signaling pathways, such as T/B cell receptor signaling pathways, PI3K/AKT signaling pathway, and mTOR signaling pathway. According to the results of molecular docking, most characteristic components of S. miltiorrhiza (miltionone Ⅱ, miltirone, protocatechuic acid, lithospermic acid, protocatechualdehyde) showed good affinity with the key targets (PIK3CA, APP, STAT3,AKT1 and mTOR). Furthermore, the anti-HBV activity of lithospermic acid, the representative active component of S. miltiorrhiza, and its regulation on PI3K/AKT and mTOR signaling pathways were investigated in an HBV replicating mouse model. Animal welfare and experimental procedures follow the regulations of the Animal Ethics and Welfare Committee of Hubei University. The results showed that lithospermic acid significantly inhibited HBV DNA replication, reduced serum HBsAg and HBeAg levels, and decreased the phosphorylation protein expression levels of AKT and mTOR in liver, indicating that lithospermic acid might exert the anti-HBV activity by regulating PI3K/AKT and mTOR signaling pathways.
Key words:    network pharmacology    Salvia miltiorrhiza    anti-hepatitis B virus activity    mechanism of action    lithospermic acid   
收稿日期: 2021-12-09
DOI: 10.16438/j.0513-4870.2021-1764
基金项目: 药物高通量筛选技术国家地方联合工程研究中心自主课题(M20202002);湖北大学大学生创新训练项目(X202010512088);国家级大学生创新创业训练计划项目(202110512027).
通讯作者: 蔡文涛,Tel:86-27-88661746-8025,E-mail:wtcai@hubu.edu.cn
Email: wtcai@hubu.edu.cn
相关功能
PDF(1034KB) Free
打印本文
0
作者相关文章
温海梅  在本刊中的所有文章
王思源  在本刊中的所有文章
王亚茹  在本刊中的所有文章
邢凤丽  在本刊中的所有文章
陈勇  在本刊中的所有文章
蔡文涛*  在本刊中的所有文章

参考文献:
[1] Van ZM, Flink HJ, Verhey E, et al. The safety of pegylated interferon alpha 2b in the treament of chronic hepatitis B:predictive factors for dose reduction and treament discontinuation[J]. Aliment Pharmacol Ther, 2005, 21:1163-1171.
[2] Yao GB, Zhu M, Cui ZY, et al. A 7-year study of lamivudine therapy for hepatitis B virus E antigen-positive chronic hepatitis B patients in China[J]. J Dig Dis, 2009, 10:131-137.
[3] Liaw YF, Kao JH, Piratvisuth T, et al. Asian-pacifific consensus statement on the management of chronic hepatitis B:a 2012 update[J]. Hepatol Int, 2012, 6:531-561.
[4] Moon S, Shin S, Kim S, et al. Role of Salvia miltiorrhiza for modulation of Th2-derived cytokines in the resolution of inflammation[J]. Immune Netwk, 2011, 11:288-298.
[5] Matkowski A, Zielińska S, Oszmiański J, et al. Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge., S. przewalskii Maxim., and S. verticillata L.[J]. Biores Technol, 2008, 99:7892-7896.
[6] Jin Q, Jiang S, Wu YJ, et al. Hepatoprotective effect of cryptotanshinone from Salvia miltiorrhiza in D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure[J]. Phytomedicine, 2014, 21:141-147.
[7] Yin ZK, Feng ZM, Jiang JS, et al. Two new tanshinone derivatives from the rhizomes of Salvia miltiorrhiza and their antiviral activities[J]. J Asian Nat Prod Res, 2020, 22:24-29.
[8] Lam FFY, Yeung JHK, Cheung JHY, et al. Pharmacological evidence for calcium channel inhibition by Danshen (Salvia miltiorrhiza) on rat isolated femoral artery[J]. J Cardiovasc Pharmacol, 2006, 47:139-145.
[9] Zhou Y, Li W, Xu L, et al. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxi-city, and tanshinones act as acetylcholinesterase inhibitors[J]. Environ Toxicol Pharmacol, 2011, 31:443-452.
[10] Yuan Y, Wu Q, Shi JS, et al. Advance in studies on hepatoprotective effect of Salvia miltiorrhiza and its main components[J]. China J Chin Mater Med (中国中药杂志), 2015, 40:588-593.
[11] Chen X, Guo JJ, Bao JL, et al. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen):a systematic review[J]. Med Res Rev, 2014, 34:768-794.
[12] Zhang J. Curative effect on the treatment of chronic hepatitis B with Danshen[J]. Acta Med Sin (华夏医学), 2005, 18:21-22.
[13] Xu F. Clinical study on the treatment of chronic hepatitis B with Danshen injection[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2013, 24:2442-2443.
[14] Zhou Z, Zhang Y, Ding XR, et al. Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo[J]. Antiviral Res, 2007, 74:59-64.
[15] Dai XQ, Cai WT, Wu X, et al. Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4α and HNF1α in vitro[J]. Life Sci, 2017, 180:68-74.
[16] Cai WT, Zhu SQ, Han FM, et al. The application of lithospermic acid in the preparation of anti-HBV drugs:CN, 201910169847.5[P]. 2019-05-21.
[17] Xie J, Gao S, Lin L, et al. Research progress and application strategy on network pharmacology in Chinese materia medica[J]. Chin Herb Med (中草药), 2019, 50:2257-2264.
[18] Li S. Network pharmacology evaluation method guidance-draft[J]. World J Tradit Chin Med (世界中医药杂志), 2021, 7:146-154.
[19] Liu Q, He Z, Yang H, et al. Exploration on active compounds of Feiduqing for treatment of COVID-19 based on network pharmacology and molecular docking[J]. Chin Herb Med (中草药), 2020, 51:1713-1722.
[20] Wu H, Wang J, Yang Y, et al. Preliminary exploration of the mechanism of Qingfei Paidu decoction against novel corona-virus pneumonia based on network pharmacology and molecular docking technology[J]. Acta Pharm Sin (药学学报), 2020, 55:374-383.
[21] Ru J, Li P, Wang J, et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. J Chem-inform, 2014, 6:13.
[22] Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates[J]. J Med Chem, 2002, 45:2615-2623.
[23] Kim S, Chen J, Cheng T, et al. PubChem 2019 update:improved access to chemical data[J]. Nucleic Acids Res, 2019, 47:D1102-D1109.
[24] Daina A, Michielin O, Zoete V. SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47:W357-W364.
[25] Yuan W, Wei Y, Chen Y, et al. Mechanisms of eleutheroside for treatment of diabetes mellitus type 2 based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2019, 54:1982-1989.
[26] Chen H, Hu J, Zhang L, et al. Exploration on mechanisms of Salvia miltiorrhiza in treating cirrhosis based on network pharmacology[J]. Chin Herb Med (中草药), 2020, 51:3968-3977.
[27] Sung Y, Li B, Guan Y, et al. Potential molecular mechanism for Chaiyin Granules against coronavirus infection based on network pharmacology and molecular docking[J]. Chin Herb Med (中草药), 2020, 51:4999-5009.
[28] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47:D607-D613.
[29] Song H, Ma X, Wang D, et al. Potential mechanism of Huangqin decoction for the treatment of ulcerative colitis based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2020, 55:247-255.
[30] Ju Y, Hou N, Zhang X, et al. Blockade of Tim-3 pathway ameliorates interferon-γ production from hepatic CD8+ T cells in a mouse model of hepatitis B virus infection[J]. Cell Mol Immunol, 2009, 6:35-43.
[31] Sang X, Wang R, Han Y, et al. T cell-associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model[J]. Acta Pharm Sin B, 2017, 7:311-318.
[32] Li W, Qiang Z, Li X, et al. Pharmacokinetics and metabolism of lithospermic acid by LC/MS/MS in rats[J]. Int J Pharm, 2008, 350:240-246.
[33] Julander JG, Sidwell RW, Morrey JD. Characterizing antiviral activity of adefovir dipivoxil in transgenic mice expressing hepatitis B virus[J]. Antiviral Res, 2002, 55:27-40.
[34] Morrey JD, Motter NE, Taro B, et al. Efficacy of cationic lipid-DNA complexes (CLDC) on hepatitis B virus in transgenic mice[J]. Antiviral Res, 2008, 79:71-79.
[35] Liu H, Jiang C, Feng J, et al. Research progress of Tanshinone[J]. Chin Pharmacol Bull (中国药理学通报), 2016, 32:1643-1647.
[36] Liu AL, Li MY, Wang YT, et al. Research status of pharmaco-logical active substance basis of Salvia miltiorrhiza[J]. Chin Pharm J (中国药学杂志), 2007, 42:641-646.
[37] Wang H, Gu J, Hou X, et al. Anti-inflammatory effect of milti-rone on inflammatory bowel disease via TLR4/NF-κB/IQGAP2 signaling pathway[J]. Biomed Pharmacother, 2017, 85:531-540.
[38] Wang ZY, Li YQ, Guo ZW, et al. ERK1/2-HNF4α axis is involved in epigallocatechin-3-gallate inhibition of HBV replication[J]. Acta Pharmacol Sin, 2020, 41:278-285.
[39] Wang GF, Shi LP, Ren YD, et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro[J]. Antiviral Res, 2009, 83:186-190.
[40] Abd-Elazem IS, Chen HS, Bates RB, et al. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1(HIV-1) integrase from Salvia miltiorrhiza[J]. Antiviral Res, 2002, 55:91-106.
[41] Janku F, Tsimberidou AM, Garrido-Laguna I, et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors[J]. Mol Cancer Ther, 2011, 10:558-565.
[42] Boyault S, Rickman DS, de Reyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets[J]. Hepatology, 2007, 45:42-52.
[43] Zheng P, Li Y, Li X, et al. Expression of P21ras and PIK3CA in human tissues of hepatocellular carcinoma and hepatic cirrhosis[J]. Int J Surg (国际外科学杂志), 2010, 37:511-514.
[44] Hösel M, Quasdorff M, Ringelhan M, et al. Hepatitis B virus activates signal transducer and activator of transcription 3 supporting hepatocyte survival and virus replication[J]. Cell Mol Gastroenterol Hepatol, 2017, 4:339-363.
[45] Wang YR, Wang QH, Zhang T, et al. Associations between hepatic functions and plasma amyloid-beta levels-implications for the capacity of liver in peripheral amyloid-beta clearance[J]. Mol Neurobiol, 2017, 54:2338-2344.
[46] Luisa B, Siham S, Darrell L, et al. Altered T cell costimulation during chronic hepatitis B infection[J]. Cell Immunol, 2009, 257:61-68.
[47] Rawat S, Bouchard MJ. The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival[J]. J Virol, 2015, 89:999-1012.
[48] Sun W, Zhang JQ, Chen JL. microRNA-520a suppresses HBV replication in HepG2.2.15 cells by inactivating AKT[J]. J Int Med Res, 2018, 46:4693-4704.
[49] Zhang LL, Fang F. PD-1 negative immunomodulation signal pathway in HBV infection[J]. Chin J Immunol (中国免疫学杂志), 2019, 35:2419-2422, 2429.
[50] Zhang XY, Kraft A, Broering R, et al. Preclinical development of TLR ligands as drugs for the treatment of chronic viral infections[J]. Expert Opin Drug Discov, 2012, 7:597-611.
[51] Wan HQ, Ge LL, Xiao LY, et al. 3,4,5-Tri-O-caffeoylquinic acid methyl ester isolated from Lonicera japonica Thunb. flower buds facilitates hepatitis B virus replication in HepG2.2.15 cells[J]. Food Chem Toxicol, 2020, 138:111250.
[52] Xiang KL, Wang B. Role of the PI3K‑AKT‑mTOR pathway in hepatitis B virus infection and replication[J]. Mol Med Rep, 2018, 17:4713-4719.
[53] Gallagher LE, Williamson LE, Chan EYW. Advances in autophagy regulatory mechanisms[J]. Cells, 2016, 5:24.
[54] Sir D, Tian Y, Chen WL, et al. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication[J]. Proc Natl Acad Sci U S A, 2010, 107:4383-4388.
[55] Zhong LM, Shu WQ, Dai WB, et al. Reactive oxygen species-mediated c-Jun NH-terminal kinase activation contributes to hepa-titis B virus X protein-induced autophagy via regulation of the Beclin-1/Bcl-2 interaction[J]. J Virol, 2017, 91:e00001-17.
相关文献:
1.叶晨, 江雯, 胡熳, 张艳, 刘钰偲, 梁继超*, 陈勇*.水飞蓟黄酮提取物治疗非酒精性脂肪肝病的网络药理学研究[J]. 药学学报, 2022,57(2): 399-408
2.杨吾燕, 闫姣姣, 高丽, 秦雪梅.基于生物信息分析研究黄芩素通过NOX2/STAT1/NF-κB通路抑制LPS诱导的BV-2细胞神经炎症的作用机制[J]. 药学学报, 2022,57(3): 716-723
3.韩彦琪, 陈志霖, 刘耀晨, 胡江宁, 许浚, 张洪兵, 刘建庭, 张杨, 张铁军, 刘昌孝.基于网络药理学的复方鱼腥草合剂清热解毒药效物质基础及作用机制研究[J]. 药学学报, 2021,56(6): 1653-1662
4.赵丽珠, 杨波, 孙向明, 张天雷, 于大海, 李文兰, 阎新佳.黄芪汤化学成分分析及其治疗非酒精性脂肪肝病的机制[J]. 药学学报, 2021,56(11): 3082-3090
5.钟仁兴, 丁子禾, 杨燕妮, 夏天乙, 王武静, 王毅, 王艳慧, 舒尊鹏.基于网络药理学分析的橘红痰咳液主治“痰、咳、喘”的药效物质基础与作用机制研究[J]. 药学学报, 2020,55(9): 2134-2144
6.宋红新, 马旭冉, 王敦方, 王彦礼, 邹迪新, 苗金雪, 王汉, 杨伟鹏.基于网络药理学的黄芩汤治疗溃疡性结肠炎的潜在机制研究[J]. 药学学报, 2020,55(2): 247-255
7.高凤凤, 裴艳玲, 任越, 陈紫军, 卢建秋, 张燕玲.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J]. 药学学报, 2020,55(11): 2642-2650
8.田瑞, 李宇飞, 李莹倩, 郑继雯, 李华山.基于网络药理学探讨李氏溃结方治疗溃疡性结肠炎的分子机制[J]. 药学学报, 2020,55(11): 2657-2664
9.董雅倩, 张佳幸, 龚琳娜, 石碧锐, 周凤华, 肖炜, 刘孟华.白花蛇舌草环烯醚萜的鉴定及基于网络药理学的抗肾纤维化作用的机制研究[J]. 药学学报, 2020,55(12): 2934-2941
10.马林, 邵明燕, 孙乾斌, 李春, 王勇.基于网络药理学的丹七片治疗冠心病作用机制研究[J]. 药学学报, 2020,55(12): 2942-2950
11.袁文彬, 韦艳美, 陈勇, 梁继超.基于网络药理学对刺五加总苷治疗2型糖尿病作用机制研究[J]. 药学学报, 2019,54(11): 1982-1989
12.史海龙, 冯雪松, 马晓军, 胥冰, 晁旭.基于网络药理学的固肠止泻丸治疗肠易激综合征作用机制研究[J]. 药学学报, 2019,54(3): 482-493
13.郭秋岩, 李玮婕, 王超, 曹人郦, 李泰贤, 毛霞, 王晓月, 郭敏群, 张彦琼, 林娜.乌头汤缓解神经病理性疼痛的炎症网络调控机制研究[J]. 药学学报, 2019,54(6): 1054-1061
14.张莹, 韦佳慧, 张成玲, 李攀红, 孙文威, 徐晓玉, 陈怡.基于网络药理学的加味佛手散抑制子宫内膜侵袭转移机制研究[J]. 药学学报, 2018,53(9): 1398-1405
15.李建良, 梁慧, 蔡淑珍, 李志勇, 图雅.基于网络药理学探讨蒙药诃子解草乌心脏毒的机制研究[J]. 药学学报, 2018,53(10): 1670-1679
16.翟园园, 刘其南, 徐佳, 姚卫峰, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸保肝作用机制研究[J]. 药学学报, 2018,53(4): 567-573
17.王珂欣, 高丽, 周玉枝, 张建琴, 秦雪梅, 杜冠华.基于网络药理学的苦参碱抗肝癌作用及机制研究[J]. 药学学报, 2017,52(6): 888-896
18.赵蕾, 武嫣斐, 高耀, 向欢, 秦雪梅, 田俊生.基于网络药理学的百合地黄汤干预心理亚健康作用机制研究[J]. 药学学报, 2017,52(1): 99-105
19.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275
20.陶瑾, 姜民, 陈露莹, 侯媛媛, 张德芹, 邱峰, 白钢.基于中药性味理论和网络药理学方法的治疗消渴方药作用机制研究[J]. 药学学报, 2017,52(2): 236-244
21.牟海栋, 屠鹏飞, 姜勇.基于网络药理学的肉桂温经通脉的作用机制研究[J]. 药学学报, 2016,51(11): 1724-1733
22.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387
23.白雨, 范雪梅, 孙瀚, 王义明, 梁琼麟, 罗国安.基于网络药理学的罗格列酮复方作用机制探讨[J]. 药学学报, 2015,50(3): 284-290