药学学报, 2022, 57(5): 1402-1410
引用本文:
陈荧, 李琳, 陈国平, 李佩, 谢智勇, 廖琼峰. 双荧光探针分子两步标记益生菌在肠道原位活性分析研究[J]. 药学学报, 2022, 57(5): 1402-1410.
CHEN Ying, LI Lin, CHEN Guo-ping, LI Pei, XIE Zhi-yong, LIAO Qiong-feng. In situ activity analysis of two-step labeling probiotics with double fluorescent probes in intestinal tract[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1402-1410.

双荧光探针分子两步标记益生菌在肠道原位活性分析研究
陈荧1, 李琳1, 陈国平1, 李佩1, 谢智勇2, 廖琼峰1*
1. 广州中医药大学中药学院, 广东 广州 510006;
2. 中山大学药学院 (深圳), 广东 广州 510006
摘要:
有效补充益生菌可有益肠道健康,但是益生菌在肠道原位活性的分析却鲜有报道。本研究通过将异硫氰酸荧光素(FITC)和5(6)-羧基四甲基罗丹明琥珀酰亚胺酯[5(6)-TAMRA-SE]分别与D-赖氨酸进行偶联,获得了两种颜色的荧光D-氨基酸(fluorescent D-amino acids,FDAAs)探针:绿色探针(fluorescein-D-lysine,FDL)和红色探针(TAMRA-D-lysine,TDL),并尝试对嗜酸乳杆菌(Lactobacillus acidophilus,LA)、干酪乳杆菌(Lactobacillus casei,LC)和韦荣球菌(Veillonella atypica,VA)3种益生菌进行了体外标记。随后将FDAAs应用到小鼠肠道菌群标记,建立方法考察了3种常用益生菌口服定植存活情况。所有动物实验方案经由广州中医药大学动物伦理委员会审查通过。结果表明,合成的两种FDAAs可以无毒且完全对3种益生菌进行体外标记;通过FDAAs两步标记口服益生菌可知,LA存活率较高为92.30%±1.67%,LC和VA的存活率相近,分别为84.13%±4.06%、82.27%±2.43%。本研究可通过快速比较不同益生菌在体内定植存活率的变化,为益生菌在肠道原位定植活性提供理论支撑,同时对临床益生菌合理用药具有指导作用。
关键词:    荧光D-氨基酸      益生菌      肠道菌群      荧光成像      体内定植     
In situ activity analysis of two-step labeling probiotics with double fluorescent probes in intestinal tract
CHEN Ying1, LI Lin1, CHEN Guo-ping1, LI Pei1, XIE Zhi-yong2, LIAO Qiong-feng1*
1. School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
2. School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
Abstract:
Effective supplementation of probiotics can be beneficial to intestinal health, but in situ analysis of probiotics activity has rarely been reported. In this study, by coupling fluorescein 5-isothiocyanate (FITC) and 5(6)-carboxytetramethylrhodamine N-succinimidyl ester (5(6)-TAMRA-SE) with D-lysine, two fluorescent D-amino acids (FDAAs) probes were obtained:green probe (fluorescein-D-lysine, FDL) and red probe (TAMRA-D-lysine, TDL). Then, we tried to label the three kinds of probiotics, Lactobacillus acidophilus (LA), Lactobacillus casei (LC) and Veillonella atypica (VA) in vitro. FDAAs was applied to the labeling of intestinal flora in mice, and a method was established to investigate the oral survival rate of three commonly used probiotics. All animal experiments were approved by the Animal Ethics Committee of Guangzhou University of Chinese Medicine. The results show that the two synthetic FDAAs can be non-toxic and 100% for the in vitro labeling of the three probiotics. Known by FDAAs two-step labeling of oral probiotics, the high survival rate of LA was 92.30% ±1.67%. The survival rates of VA and LC are similar, 84.13% ±4.06% and 82.27% ±2.43%, respectively. This study can quickly compare the changes of colonization survival rate of different probioticsin vivo, provide theoretical support for the in situ colonization activity of probiotics in the intestine, and guide the rational drug use of clinical probiotics.
Key words:    fluorescent D-amino acid    probiotics    intestinal flora    fluorescence imaging    colonization in vivo   
收稿日期: 2021-11-03
DOI: 10.16438/j.0513-4870.2021-1576
基金项目: 国家自然科学基金资助项目(82074142,82174104,U1903211,U1803123).
通讯作者: 廖琼峰,Tel:86-20-39358081,E-mail:zyfxliao@gzucm.edu.cn
Email: zyfxliao@gzucm.edu.cn
相关功能
PDF(788KB) Free
打印本文
0
作者相关文章
陈荧  在本刊中的所有文章
李琳  在本刊中的所有文章
陈国平  在本刊中的所有文章
李佩  在本刊中的所有文章
谢智勇  在本刊中的所有文章
廖琼峰  在本刊中的所有文章

参考文献:
[1] Kanmani P, Satish KR, Yuvaraj N, et al. Probiotics and its functionally valuable products-a review[J]. Crit Rev Food Sci Nutr, 2013, 53:641-658.
[2] Flint HJ, Scott KP, Louis P, et al. The role of the gut microbiota in nutrition and health[J]. Nat Rev Gastroenterol Hepatol, 2012, 9:577-589.
[3] Quigley EMM. Prebiotics and probiotics in digestive health[J]. Clin Gastroenterol Hepatol, 2019, 17:333-344.
[4] Lee DK, Park JE, Kim MJ, et al. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients[J]. Clin Res Hepatol Gastroenterol, 2015, 39:237-244.
[5] Kang S, Park MY, Brooks I, et al. Spore-forming Bacillus coagulans SNZ 1969 improved intestinal motility and constipation perception mediated by microbial alterations in healthy adults with mild intermittent constipation:a randomized controlled trial[J]. Food Res Int, 2021, 146:110428.
[6] Schnadower D, O'Connell KJ, VanBuren JM, et al. Association between diarrhea duration and severity and probiotic efficacy in children with acute gastroenteritis[J]. Am J Gastroenterol, 2021, 116:1523-1532.
[7] Tripathy A, Dash J, Kancharla S, et al. Probiotics:a promising candidate for management of colorectal cancer[J]. Cancers (Basel), 2021, 13:3178.
[8] Riaz RMS, Shi J, Zhu J, et al. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention[J]. Appl Microbiol Biotechnol, 2017, 101:35-45.
[9] Wang W, Zhu Y, Chen X. Selective imaging of gram-negative and gram-positive microbiotas in the mouse gut[J]. Biochemistry, 2017, 56:3889-3893.
[10] Lin L, Wu Q, Song J, et al. Revealing the in vivo growth and division patterns of mouse gut bacteria[J]. Sci Adv, 2020, 6:eabb2531.
[11] Ding SJ, Wang WW, Li AK, et al. Advance on adhesion of probiotic in intestinal tract[J]. Feed Ind Mag (饲料工业), 2016, 37:55-61.
[12] Qin WF, Song X, Xia YJ, et al. Influencing factors of lactic acid bacteria in the intestinal colonization and research methods[J]. Food Sci (食品科学), 2021, 42:275-283.
[13] Wu ZC, Gao YS, Wang S, et al. Advances in the adhesion ability evaluation model of probiotics[J]. J Microbiol (微生物学杂志), 2019, 39:114-119.
[14] Wang W, Yang Q, Du Y, et al. Metabolic labeling of peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota[J]. Angew Chem Int Ed Engl, 2020, 59:2628-2633.
[15] Lim B, Zimmermann M, Barry NA, et al. Engineered regulatory systems modulate gene expression of human commensals in the gut[J]. Cell, 2017, 169:547-558.
[16] Foucault ML, Thomas L, Goussard S, et al. In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice[J]. Appl Environ Microbiol, 2010, 76:264-274.
[17] Landete JM, Medina M, Arqués JL. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria[J]. World J Microbiol Biotechnol, 2016, 32:119.
[18] Hudak JE, Alvarez D, Skelly A, et al. Illuminating vital surface molecules of symbionts in health and disease[J]. Nat Microbiol, 2017, 2:17099.
[19] Chen C, Zhou FF, Wu ZZ, et al. A fluorescence labeling method for the study on antagonistic activities of Lactobacillus plantarum ST-Ⅲ against enteric pathogens and its related mechanism[J]. Chin J Microecol (中国微生态学杂志), 2010, 22:773-777, 780.
[20] Magnet S, Arbeloa A, Mainardi JL, et al. Specificity of L,D-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes[J]. J Biol Chem, 2007, 282:13151-13159.
[21] Lam H, Oh DC, Cava F, et al. D-Amino acids govern stationary phase cell wall remodeling in bacteria[J]. Science, 2009, 325:1552-1555.
[22] Justice SS, Harrison A, Becknell B, et al. Bacterial differentiation, development, and disease:mechanisms for survival[J]. FEMS Microbiol Lett, 2014, 360:1-8.
[23] Kuru E, Tekkam S, Hall E, et al. Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ[J]. Nat Protoc, 2015, 10:33-52.
[24] Van Zyl WF, Deane SM, Dicks LMT. In vivo bioluminescence imaging of the spatial and temporal colonization of lactobacillus plantarum 423 and enterococcus mundtii ST4SA in the intestinal tract of mice[J]. BMC Microbiol. 2018, 18:171.
[25] Egan AJ, Vollmer W. The physiology of bacterial cell division[J]. Ann N Y Acad Sci, 2013, 1277:8-28.
[26] Vollmer W, Joris B, Charlier P, et al. Bacterial peptidoglycan (murein) hydrolases[J]. FEMS Microbiol Rev, 2008, 32:259-286.
[27] Kuru E, Hughes HV, Brown PJ, et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids[J]. Angew Chem Int Ed Engl, 2012, 51:12519-12523.
[28] Todorov SD, Botes M, Guigas C, et al. Boza, a natural source of probiotic lactic acid bacteria[J]. J Appl Microbiol, 2010, 104:465-477.
[29] Kumar R, Bansal P, Singh J, et al. Aggregation, adhesion and efficacy studies of probiotic candidate Pediococcus acidilactici NCDC 252:a strain of dairy origin[J]. World J Microbiol Biotechnol, 2020, 36:1-15.
[30] Calatayud M, Dezutter O, Hernandez-Sanabria E, et al. Development of a host-microbiome model of the small intestine[J]. FASEB J, 2019, 33:3985-3996.
[31] Santarmaki V, Kourkoutas Y, Zoumpopoulou G, et al. Survival, intestinal mucosa adhesion, and immunomodulatory potential of Lactobacillus plantarum strains[J]. Curr Microbiol, 2017, 74:1061-1067.
[32] Peng D, Hu ZW, Zhang XW. Therapeutic perspectives of intestinal probiotics A. muciniphila in metabolic disorders[J]. Acta Pharm Sin (药学学报), 2019, 54:768-777.
[33] Wang W, Zhang N, Du YH, et al. Three-dimensional quantitative imaging of native microbiota distribution in the gut[J]. Angew Chem Int Ed Engl, 2021, 60:3055-3061.