药学学报, 2022, 57(5): 1411-1419
引用本文:
王森岩, 卫拂晓, 刘欢乐, 赵思俊, 秦雪梅, 刘晓节. 应激敏感与应激抵抗大鼠粪便代谢组学研究[J]. 药学学报, 2022, 57(5): 1411-1419.
WANG Sen-yan, WEI Fu-xiao, LIU Huan-le, ZHAO Si-jun, QIN Xue-mei, LIU Xiao-jie. Study on the fecal metabolomics of CUMS-susceptible and CUMS-resilient rats[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1411-1419.

应激敏感与应激抵抗大鼠粪便代谢组学研究
王森岩1,2,3, 卫拂晓1,2,3, 刘欢乐1,2,3, 赵思俊4, 秦雪梅1,2,3, 刘晓节1,2,3*
1. 山西大学中医药现代研究中心, 山西 太原 030006;
2. 山西大学化学生物学与分子工程教育部重点实验室, 山西 太原 030006;
3. 山西大学地产中药功效物质研究与利用山西省重点实验室, 山西 太原 030006;
4. 山西省食品药品检验所, 山西 太原 030001
摘要:
应用核磁代谢组学技术表征应激敏感大鼠和应激抵抗大鼠的粪便代谢轮廓,明确应激敏感和应激抵抗的生物标志物及代谢通路的异同,阐释相同应激下机体不同反应的发生机制。首先,复制慢性不可预知温和刺激(chronic unpredictable mild stress,CUMS)大鼠抑郁模型;根据大鼠的粪便代谢组学轮廓将模型大鼠分为应激敏感大鼠和应激抵抗大鼠;其次,基于糖水偏爱率验证应激敏感大鼠和应激抵抗大鼠的抑郁状况;最后,应用多元统计分析明确应激敏感大鼠和应激抵抗大鼠粪便的生物标志物及相关代谢通路,阐明其机制。结果表明:与空白组相比,应激敏感大鼠的糖水偏爱率显著降低,而应激抵抗大鼠的糖水偏爱率未发生显著变化。代谢组学研究结果发现,应激敏感和应激抵抗具有相同和特异的差异代谢物和代谢途径。3条代谢途径与应激敏感显著相关,包括牛磺酸和亚牛磺酸代谢,丙氨酸、天门冬氨酸和谷氨酸代谢以及精氨酸和脯氨酸代谢。甘油酯代谢和色氨酸代谢是应激抵抗的特异性代谢通路。本研究从代谢组学角度探讨了相同刺激下,机体出现敏感和抵抗两种不同状态的机制,为抑郁症的研究提供了新视角,亦为临床个体化和精准治疗以及抗抑郁药物的研发提供了新思路。
关键词:    抑郁症      慢性不可预知温和刺激      应激敏感      应激抵抗      糖水偏爱率      粪便代谢组学     
Study on the fecal metabolomics of CUMS-susceptible and CUMS-resilient rats
WANG Sen-yan1,2,3, WEI Fu-xiao1,2,3, LIU Huan-le1,2,3, ZHAO Si-jun4, QIN Xue-mei1,2,3, LIU Xiao-jie1,2,3*
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
2. Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
3. Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Shanxi University, Taiyuan 030006, China;
4. Shanxi Institute for Food and Drug Control, Taiyuan 030001, China
Abstract:
Proton nuclear magnetic resonance (1H NMR) based metabolomics was applied to characterize the fecal metabolic profiles of chronic unpredictable mild stress (CUMS)-depression (CUMS-D) and CUMS-resilience (CUMS-R) rats. The fecal biomarkers and metabolic pathways involved in CUMS-D and CUMS-R were screened and identified, revealing the underlying mechanisms of two different responses of the body to the same stresses. Firstly, the classic depression model, i.e. CUMS, was constructed. According to the fecal metabolomics profiles, the model rats were divided into two groups, i.e. the CUMS-D group and the CUMS-R group. And then, the depression statuses of CUMS-D rats and CUMS-R rats were verified by their sucrose preference rates. Lastly, multivariate data analysis was applied to clarify the fecal biomarkers and corresponding metabolic pathways involving in CUMS-D and CUMS-R. The results show that compared with the control rats, the sucrose preference rates of CUMS-D rats were significantly reduced. By contrast, the sucrose preference rates of CUMS-R rats had no significant difference. At the same time, CUMS-D and CUMS-R showed both unique and shared biomarkers and pathways. Three pathways are significantly related to CUMS-D, including taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism, and arginine and proline metabolism. Glycerolipid metabolism and tryptophan metabolism are specific pathways related to CUMS-R. This study explores the mechanisms of the emergence of susceptible and resilience of rats under the same stimulus from a metabolomics perspective. The current findings provide not only a new perspective for studying depression, and personalized and precision treatments in clinic, but also the research and development of antidepressants.
Key words:    depression    chronic unpredictable mild stress    stress susceptibility    stress resilience    sucrose preference rate    fecal metabolomics   
收稿日期: 2021-11-29
DOI: 10.16438/j.0513-4870.2021-1707
基金项目: 国家自然科学基金青年项目(81803962);山西省留学回国人员科技活动择优资助项目(20200013);地产中药功效物质研究与利用山西省重点实验室资助项目(202105D121009).
通讯作者: 刘晓节,Tel:86-351-7018379,E-mail:liuxiaojie@sxu.edu.cn
Email: liuxiaojie@sxu.edu.cn
相关功能
PDF(609KB) Free
打印本文
0
作者相关文章
王森岩  在本刊中的所有文章
卫拂晓  在本刊中的所有文章
刘欢乐  在本刊中的所有文章
赵思俊  在本刊中的所有文章
秦雪梅  在本刊中的所有文章
刘晓节  在本刊中的所有文章

参考文献:
[1] Xue YL, Xu JT, Qiu JH. Effect of icariin on depression-like behavior and neuronal damage in depression rats[J]. J Clin Exp Med (临床和实验医学杂志), 2021, 20:2152-2156.
[2] Wang BM, Qiao P, Wang W, et al. Effect of Albiziae Flos and Polygalae Radix alone and their combination on depression-like behavior and CREB and NOX2 expression in hippocampus of chronic unpredictable stress-induced rats[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2021, 27:32-39.
[3] Wu YR, Luo H. Research progress on the effect of stress on adolescent depression[J/OL]. Chin J Child Health Care (中国儿童保健杂志), 2021[2021-12-25]. http://kns.cnki.net/kcms/detail/61.1346.R.20210623.1521.028.html.
[4] He X, Liu W, Zhu B, et al. Study on the effect and mechanism of stress factors on rat intestinal flora[J]. Clin J Med Off (临床军医杂志), 2021, 49:361-364.
[5] Ren SY, Wang ZZ, Chen NH. Research progress on anti-depression effects of ginsenosides[J]. Acta Pharm Sin (药学学报), 2019, 54:2204-2208.
[6] Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat:implications for a model of depression[J]. Neurosci Biobehav Rev, 1981, 5:247-251.
[7] Xu P, Pang ZZ, Huang SY, et al. Experimental research of punicalagin on depression-like behaviors and optimizing the composition of intestinal flora in mice[J/OL]. Chin J Immunol (中国免疫学杂志), 2021[2021-12-25]. https://kns.cnki.net/kcms/detail/22.1126.R.20211111.1508.006.html.
[8] Li X, Fang X, Xu XH, et al. Effect of ephrin-B2 on hippocampal neurons in a rat depression model[J]. Chin J Geriatr Cardiovasc Cerebrovasc Dis (中华老年心脑血管病杂志), 2021, 23:1090-1094.
[9] Hjemdal O, Vogel PA, Solem S, et al. The relationship between resilience and levels of anxiety, depression, and obsessive-compulsive symptoms in adolescents[J]. Clin Psychol Psychother, 2011, 18:314-321.
[10] Gourley SL, Swanson AM, Koleske AJ. Corticosteroid-induced neural remodeling predicts behavioral vulnerability and resilience[J]. J Neurosci, 2013, 33:3107-3112.
[11] Li Y. Differential Expression of Hippocampal EphA4 and EphrinA3 in Anhedonic-like Behavior, Stress Resilience, and Antidepressant Drug Treatment After Chronic Unpredicted Mild Stress (慢性不可预见性应激敏感与抵抗及氟西汀用药有效与抵抗大鼠海马中Eph家族蛋白的改变)[D]. Wuhan:Wuhan University, 2014.
[12] Lv M, Wang YZ, Zhao D, et al. Anti-depression mechanisms of Xiaoyao Powder based on fecal metabolomics[J]. Chin Tradit Herb Drug (中草药), 2020, 51:3482-3492.
[13] Liu Z, Zhou N, Liu T, et al. Progress in depression based on metabolomics[J]. Chin J Pathophysiol (中国病理生理杂志), 2020, 36:2264-2275.
[14] Liu ZR, Yang B, Liu F, et al. A metabolomic study of Baihe Zhimu decoction in a rat model of depression[J]. Chin J Third Mil Med Univ (第三军医大学学报), 2019, 41:1917-1925.
[15] Li T, Li X, Tian JS, et al. Metabolic pathways related to liver-soothing and depression-relieving effect of Bupleuri Radix-Paeoniae Radix Alba combination:based on 1H-NMR metabolomics[J]. Mod Chin Med (中国现代中药), 2021, 23:1380-1390.
[16] Jiang N, Zhang YW, Yao CH, et al. Overview of animal behavioral tests of depression[J]. Acta Lab Anim Sci Sin (中国实验动物学报), 2021, 29:830-838.
[17] Gao RJ, Huang H, Jiang N, et al. Improvement effects of soybean isoflavones on lipopolysaccharide-induced depression-like behavior in mice[J]. Soybean Sci (大豆科学), 2021, 40:539-545.
[18] Wu ZN, Zhang C. Research advances in inflammatory mechanism of anhedonia[J]. J Shanghai Jiaotong Univ Med Sci (上海交通大学学报(医学版)), 2021,41:241-245.
[19] Wang XX, Tao ZP, Li Y, et al. Progress in the application of metabolomics on anti-depression with traditional Chinese medicine[J]. Mod Tradit Chin Med Mater Med-World Sci Technol (世界科学技术-中医药现代化), 2020,22:1913-1921.
[20] Sheng N, Wang CH, Jia ZX, et al. The mechanism of Er-xian Decoction in regulating lipid metabolism disorders on bilateral ovariectomized rats based on metabolomics study[J]. Acta Pharm Sin (药学学报), 2021, 56:2403-2409.
[21] Feng Y, Meng MD, Feng JY, et al. Antidepressant-like effects of the petroleum ether fraction of Xiaoyaosan in the CUMS rat model of depression[J]. Acta Pharm Sin (药学学报), 2020, 55:305-314.
[22] He R, Xie J, Su H, et al. Effect of temperature on muscle nutritional components and blood biochemical parameters of Pelodiscus sinensis alive without water[J]. Food Sci (食品科学), 2014, 35:194-199.
[23] Wu G. Amino acids:metabolism, functions, and nutrition[J]. Amino Acids, 2009, 37:1-17.
[24] Modoux M, Rolhion N, Mani S, et al. Tryptophan metabolism as a pharmacological target[J]. Trends Pharmacol Sci, 2021, 42:60-73.
[25] Roth W, Zadeh K, Vekariya R, et al. Tryptophan metabolism and gut-brain homeostasis[J]. Int J Mol Sci, 2021, 22:2973.
[26] Li XL, Jang M, Ruan Z, et al. Review of effects of L-tryptophan and its metabolite 5-hydroxytryptamine on intestinal function[J]. Food Safe Qual Detec Technol (食品安全质量检测学报), 2014, 5:1997-2002.
[27] Sun LX, Gao WH. Lipid metabolism test[J]. World Health Digest (中外健康文摘), 2011, 8:139-140.
[28] Ren YF, Wu CT. The mechanism of L-arginine in the repair of intestinal mucosal injury[J]. Chin Crit Care Med (中国危重病急救医学), 2006, 18:764-765.
[29] Zhao YX. A Study on the Antidepressant Mechanism of Arginine Metabolism Mediated by Chaigui Granules Regulating Intestinal Flora (柴归颗粒调节肠道菌群介导精氨酸代谢抗抑郁作用机制研究)[D]. Taiyuan:Shanxi University, 2021.
[30] Liu CC. Plasma Metabolomics Studies on the Clinical Antidepressant Effect of Xiaoyaosan (逍遥散临床治疗抑郁症的血浆代谢组学研究)[D]. Taiyuan:Shanxi University, 2016.
[31] Yu H, Guo ZZ, Shen SR, et al. Effects of taurine on gut microbiota and metabolism in mice[J]. Amino Acids, 2016, 48:1601-1617.
[32] Zhang XF, Yan CJ, Zhou Q, et al. Intervention of taurine on CUMS-induced depression in mice[J]. J Chin Inst Food Sci Technol (中国食品学报), 2021, 21:123-130.
[33] Li CS, Zhang Q, Wang YT, et al. Physiological function of taurine in endocrine system[J]. Prog Vet Med (动物医学进展), 2016, 37:109-112.
[34] Li HH. Study on the Relationship Between Intestinal Microflora, Short Chain Fatty Acids and Schizophrenia (肠道菌群及短链脂肪酸与精神分裂症的相关性研究)[D]. Zhengzhou:Zhengzhou University, 2020.