药学学报, 2022, 57(5): 1516-1525
引用本文:
张洁, 陆嘉惠, 王倩倩, 刘梦楠, 徐可. 新疆产黄甘草叶绿体基因组特征及甘草属药用植物叶绿体基因组比较与系统发育分析[J]. 药学学报, 2022, 57(5): 1516-1525.
ZHANG Jie, LU Jia-hui, WANG Qian-qian, LIU Meng-nan, XU Ke. Characteristics of the chloroplast genome of Glycyrrhiza eurycarpa P.C.Li from Xinjiang with comparison and phylogenetic analysis of the chloroplast genomes of the medicinal plants of Glycyrrhiza[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1516-1525.

新疆产黄甘草叶绿体基因组特征及甘草属药用植物叶绿体基因组比较与系统发育分析
张洁1, 陆嘉惠1,2*, 王倩倩1, 刘梦楠1, 徐可1
1. 石河子大学生命科学学院, 新疆植物药资源利用教育部重点实验室, 新疆 石河子 832003;
2. 石河子大学甘草研究所, 新疆 石河子 832003
摘要:
黄甘草为甘草属药用植物资源,常混于道地甘草药材中。本研究利用Illumina高通量测序技术对黄甘草叶绿体全基因组进行测序,完成其物理图谱绘制和基因组特征解析,并与甘草、胀果甘草、光果甘草进行比较基因组学分析,构建甘草属的系统进化树。黄甘草叶绿体基因组基因组全长127 864 bp,GC含量34.25%,由一个大单拷贝区(large single copy,LSC)、一个小单拷贝区(small single copy,SSC)构成,基因组缺失反向重复IR区,属于IRLC群体;共注释得到110个基因,包括76个蛋白编码基因、30个tRNA基因和4个rRNA基因。MISA共检测出301个SSRs,富含A-T重复。黄甘草叶绿体基因组密码子偏好性较弱,密码子偏向使用A和T这两种碱基。通过同源性比对,筛选出黄甘草的3个特异性基因片段。基于Pi分析获得药用甘草植物6个新的高突变区(psbZpsbCtrnC-GCArpoBtrnR-UCUtrnG-UCCycf2trnN-GUUycf1ndhA)。系统发育分析结果支持新疆产黄甘草为与三种药用甘草关系密切的种间杂交类群,同域分布的胀果甘草是其父本。本研究为甘草属药用植物正伪品的分类鉴定、药材特异DNA指纹开发和遗传多样性、分子植物育种等研究奠定基础。
关键词:    黄甘草      甘草属      比较基因组      系统发育     
Characteristics of the chloroplast genome of Glycyrrhiza eurycarpa P.C.Li from Xinjiang with comparison and phylogenetic analysis of the chloroplast genomes of the medicinal plants of Glycyrrhiza
ZHANG Jie1, LU Jia-hui1,2*, WANG Qian-qian1, LIU Meng-nan1, XU Ke1
1. College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, China;
2. Licorice Research Institute of Shihezi University, Shihezi 832003, China
Abstract:
Glycyrrhiza eurycarpa P.C.Li is a medicinal plant resource and is often mixed with traditional licorice herbs. We sequenced the chloroplast genome of Glycyrrhiza eurycarpa P.C.Li using Illumina high-throughput sequencing technology, and physical mapping and genomic characterization was carried out. Comparative genomic analysis was performed with Glycyrrhiza uralensis Fisch, Glycyrrhiza inflata Bat and Glycyrrhiza glabra L. The Glycyrrhiza eurycarpa P.C.Li chloroplast genome was 127 864 bp long with 34.25% GC content, consisting of a large single copy and a small single copy. The genome was missing the inverted repeat (IR) region. A total of 110 genes were annotated, including 76 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The 301 SSRs, rich in A-T repeats, were detected by MISA. The Glycyrrhiza eurycarpa P.C.Li chloroplast genome showed weak codon preference, and the codons were biased to use A and T bases. Three specific gene fragments of Glycyrrhiza eurycarpa P.C.Li were characterized by homology comparison. Based on Pi analysis, six new high mutation regions (psbZ-psbC, trnC-GCA-rpoB, trnR-UCU-trnG-UCC,ycf2, trnN-GUU-ycf1, ndhA) of medicinal licorice species were determined. The results of phylogenetic analysis indicate that Glycyrrhiza eurycarpa P.C.Li from Xinjiang is an interspecific hybrid taxon closely related to the three medicinal licorice species, and Glycyrrhiza inflata Bat, which is distributed in the same domain, is its male parent. Based on this study, the taxonomic identification, herb-specific DNA fingerprint development, genetic diversity, and molecular plant breeding of medicinal plants of the genus Glycyrrhiza can be established.
Key words:    Glycyrrhiza eurycarpa    Glycyrrhiza    comparative genome    phylogeny   
收稿日期: 2021-11-15
DOI: 10.16438/j.0513-4870.2021-1661
基金项目: 国家自然科学基金资助项目(31760046).
通讯作者: 陆嘉惠,E-mail:jiahuil@shzu.edu.cn
Email: jiahuil@shzu.edu.cn
相关功能
PDF(936KB) Free
打印本文
0
作者相关文章
张洁  在本刊中的所有文章
陆嘉惠  在本刊中的所有文章
王倩倩  在本刊中的所有文章
刘梦楠  在本刊中的所有文章
徐可  在本刊中的所有文章

参考文献:
[1] Zhao YK, Li L, Liu X, et al. Explore pharmacological mechanism of glycyrrhizin based on systems pharmacology[J]. China J Chin Mater Med (中国中药杂志), 2016, 41:1916-1920.
[2] Chen R, Wang TT, Li KL, et al. Characteristics and application of immune-regulating and antiviral Chinese materia medica[J]. Chin Tradit Herb Drugs (中草药), 2020, 51:1412-1426.
[3] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Beijing:China Medical Science Press, 2020:1088.
[4] Zhang XL, Li XY, Wei LJ, et al. Interspecific hybridization of Glycyrrhiza in Xinjiang[J]. Acta Bot Bor-Occid Sin (西北植物学报), 1998, 18:132-136.
[5] Liao YH. Study on Breeding System of Two Medicinal Glycyrrhiza (两种药用甘草繁育系统的研究)[D]. Shihezi:Shihezi University, 2011.
[6] Tian RW. Effects of Stamens Differentiations on Pollination Mechanism and Breeding System of two Glycyrrhiza Species (两种药用甘草花内雄蕊分化对传粉机制和繁育系统影响的研究)[D]. Shihezi:Shihezi University, 2013.
[7] Xie LB, Lu JH, Li XL, et al. The cross compatibility and hybrid seed vigor among three Glycyrrhiza species[J]. Plant Diver Resour (植物分类与资源学报), 2014, 36:342-348.
[8] Li XL, Lu JH, Xie LB, et al. Development of EST-SSR primers and genetic relationship analysis in four Glycyrrhiza L. Species[J]. Acta Bot Bor-Occid Sin (西北植物学报), 2015, 35:480-485.
[9] Chen CN, Lu JH, Li XY, et al. Inheritance analysis and discovery of chloroplast paternal inheritance in interspecific crossing of Glycyrrhiza[J]. Guihaia (广西植物), 2017, 37:162-168, 138.
[10] Xin Q. Hybridization Area Composition and Interspecies Introgression Glycyrrhiza L. Revealed by Transcriptome Microsatellite Marker (基于转录组SSR分子标记的甘草属植物杂交区组成及种间基因渐渗研究)[D]. Shihezi:Shihezi University, 2019.
[11] Chen WQ, Lu JH, Wang QQ, et al. Numerica ltaxonomic study of morphological characteristics of species in Glycyrrhiza hybridzones[J]. Acta Pratac Sin (草业学报), 2020, 29:14-26.
[12] Zhang PY, Peng ZX. Glycyrrhiza of northwest China-one of the resource plant information of northwest China[J]. J Lanzhou Univ (兰州大学学报), 1960, 6:7-8.
[13] Ma M, Li XY. Allozyme Analysis of Glycyrrhiza inflata Complex. Chinese Society of Botany. Abstracts of the second China Licorice Symposium and the second Xinjiang Plant Resources Development, Utilization and Protection Symposium (全国第二届中国甘草学术研讨会暨第二届植物资源开发、利用与保护学术研讨会会议论文摘要集)[C]. Beijing:Chinese Society of Botany, 2004:7.
[14] Lu JH, Li XY, Ma M, et al. Analysis and classification of Glycyrrhiza L. plants in China by RAPD[J]. Acta Bot Bor-Occid Sin (西北植物学报), 2006, 26:527-531.
[15] Song F. The Genetic Diversity and Introgression among Natural Populations of Glycyrrhiza L. Revealed by Start Codon Targeted (SCoT) (基于SCoT分子标记的甘草属植物自然居群的遗传多样性与基因渐渗研究)[D]. Shihezi:Shihezi University, 2017.
[16] Palmer J, Stein D. Conservation of chloroplast genome structure among vascular plants[J]. Curr Genet, 1986, 10:823-833.
[17] Wu LW, Cui YX, Nie LP, et al. The characteristics of complete chloroplast genome sequence and phylogenetic analysis of Dendrobium moniliforme[J]. Acta Pharm Sin (药学学报), 2020, 55:1056-1066.
[18] Wu Q, Jiang M, Chen HM, et al. Comparative analysis of three complete chloroplast genomes of Inula genus with phylogenetic analysis of 49 plants from Carduoideae[J]. Acta Pharm Sin (药学学报), 2020, 55:1042-1049.
[19] Dong BR, Zhao ZL, Ni LH, et al. Molecular markers based upon whole chloroplast genomes and identifying alpine Gentiana waltonii and G. lhassica (Gentianaceae)[J]. Acta Pharm Sin (药学学报), 2021, 56:2584-259.
[20] Zhang MY, Zhang YQ, Li YM, et al. Complete plastid genomes of Bupleurum chinense DC. and B. boissieuanum H. Wolff, with comparative and phylogenetic analyses of medicinal Bupleurum species[J]. Acta Pharm Sin (药学学报), 2021, 56:618-629.
[21] Sabir J, Schwarz E, Ellison N, et al. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes[J]. Plant Biotechnol J, 2014, 12:743-754
[22] Duan L, Zhang ZR, Deng SW, et al. The complete chloroplast genomes of rare medical herb Glycyrrhiza inflata and its relative G. aspera (Fabaceae)[J]. Mitochondrial DNA B, 2019, 4:4083-4084.
[23] Jiang WL, Tan W, Gao H, et al. Transcriptome and complete chloroplast genome of Glycyrrhiza inflata and comparative analyses with the other two licorice species[J]. Genomics, 2020, 112:4179-4188.
[24] Lee C, Choi IS, Cardoso D, et al. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes[J]. Plant J, 2021, 107:861-875.
[25] Kang SH, Lee JH, Lee HO, et al. Complete chloroplast genome and 45S nrDNA sequences of the medicinal plant species Glycyrrhiza glabra and Glycyrrhiza uralensis[J]. Genes Genet Syst, 2018, 93:83-89.
[26] Jia GL, Li P, Zhu Q, et al. Characterization of the complete chloroplast genome of Glycyrrhiza uralensis (Leguminosae), a traditional Chinese medicine[J]. Mitochondrial DNA B, 2019, 4:3040-3041.
[27] Li XY, Lu JH. Taxonomy and Experimental Biology of the Genus Glycyrrhiza L (甘草属分类系统与实验生物学研究)[M]. Shanghai:Fudan University Press, 2015:3-50.
[28] Cui HB, Li PQ. Flora of China:Vol 42(中国植物志第42卷)[M]. Beijing:Science Press, 1998:168-174.
[29] Weber JL. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms[J]. Genomics, 1990, 7:524-530.
[30] Wang B, Chen HM, Ma HQ, et al. Complete plastid genome of Astragalus membranaceus (Fisch.) Bunge var. Membranaceus[J]. Mitochondrial DNA B, 2016, 1:517-519.
[31] Qiao YG, He JX, Wang JX, et al. Analysis of chloroplast genome and its characteristics of medicinal plant Sophora flavescen[J]. Acta Pharm Sin (药学学报), 2019, 54:2106-2112.
[32] Palmer JD, Nugent JM, Herbon LA. Unusual structure of geranium chloroplast DNA:a triple-sizedinverted repeat, extensive gene duplications, multiple inversions, and two repeat families[J]. Proc Natl Acad Sci U S A, 1987, 84:769-773.
[33] Lei WJ. Study on Chloroplast Genome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. (Hsiao) (蒙古黄芪叶绿体基因组研究)[D]. Taiyuan:Shanxi Agricultural University, 2016.
[34] Huo YX, Zhao YK, Xu LW, et al. An integrated strategy for target SSR genotyping with toleration of nucleotide variations in the SSRs and flanking regions[J]. BMC Bioinform, 2021, 22:1-14.
[35] Zhang MY, Wang XF, Gao J, et al. Complete chloroplast genome of Paeonia mairei H. Lév:characterization and phylogeny[J]. Acta Pharm Sin (药学学报), 2020, 55:168-176.
[36] Guo HJ, Liu JS, Luo L, et al. Complete chloroplast genome sequences of Schisandra chinensis:genome structure, comparative analysis, and phylogenetic relationship of basal angiosperms[J]. Sci China C (中国科学:生命科学), 2017, 60:1286-1290.
[37] Yang QQ, Jiang M, Wang LQ, et al. Complete chloroplast genome of Allium chinense:comparative genomic and phylogenetic analysis[J]. Acta Pharm Sin (药学学报), 2019, 54:173-181.
[38] Tian N, Han LM, Chen C, et al. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species[J]. PLoS One, 2018, 13:e0192956.
[39] Kuang DY, Wu H, Wang TL, et al. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae):implication for DNA barcoding and population genetics[J]. Genome, 2011, 54:663-673.
[40] Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes:a proposal for a synonymous codon choice that is optimal for the E. coli translational system[J]. J Mol Biol, 1981, 151:389-409.
[41] Yang GF, Su KL, Zhao YR, et al. Analysis of codon usage in the chloroplast genome of Medicago truncatula[J]. Acta Pratac Sin (草业学报), 2015, 24:171-179.
[42] Kondo K, Shiba M, Yamaji HY, et al. Species identifi-cation of licorice using nr DNA and cp DNA genetic marker[J]. Biol Pharm Bull, 2007, 30:1497-1502.
[43] Yang JL, Zhu ZL, Fan YJ, et al. Comparative plastomic analysis of three Bulbophyllum medicinal plants and its significance in species identification[J]. Acta Pharm Sin (药学学报), 2020, 55:2736-2745.
[44] Tang P, Xu Q, Shen RN, et al. Phylogenetic relationship in Actinidia (Actinidiaceae) based on four noncoding chloroplast DNA sequences[J]. Plant Syst Evol, 2019, 305:787-796.
[45] Liu YF, Li DW, Zhang Q, et al. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification[J]. New Phytol, 2017, 215:877-890.
相关文献:
1.乔永刚, 贺嘉欣, 王勇飞, 曹亚萍, 贾孟君, 张鑫瑞, 梁建萍, 宋芸.药用植物苦参的叶绿体基因组及其特征分析[J]. 药学学报, 2019,54(11): 2106-2112