药学学报, 2013, 48(12): 1771-1777
引用本文:
李良, 刘红, 张胜华, 胡磊, 甄永苏. 肉桂酰胺格尔德霉素的体内外抗肿瘤活性[J]. 药学学报, 2013, 48(12): 1771-1777.
LI Liang, LIU Hong, ZHANG Sheng-hua, HU Lei, ZHEN Yong-su. Anticancer effect of 17-(6-cinnamamido-hexylamino-)-17-demethoxygeldanamycin:in vitro and in vivo[J]. Acta Pharmaceutica Sinica, 2013, 48(12): 1771-1777.

肉桂酰胺格尔德霉素的体内外抗肿瘤活性
李良, 刘红, 张胜华, 胡磊, 甄永苏
中国医学科学院、北京协和医学院医药生物技术研究所, 北京 100050
摘要:
探讨化合物肉桂酰胺格尔德霉素(CDG)的体内外抗肿瘤活性。采用MTT法检测肿瘤细胞增殖,免疫荧光法和Annexin V-FITC/PI双染法检测肿瘤细胞凋亡,Transwell法检测肿瘤细胞迁移能力,Western blotting法检测肿瘤细胞中RAF-1、EGFR、AKT、CDK4、HER-2蛋白水平。使用异种移植瘤裸鼠模型检测CDG对人乳腺癌MCF-7细胞的生长抑制作用。结果表明:CDG对不同肿瘤细胞增殖具有抑制作用,IC50为13.6~67.4 μg·mL-1;CDG能够诱导肿瘤细胞凋亡,引起多种细胞形态学改变;同时,CDG还可降低肿瘤细胞迁移能力,减少RAF-1、EGFR、AKT、CDK4、HER-2蛋白水平;体内实验结果显示,CDG毒性明显低于格尔德霉素(GDM),并且能够抑制人乳腺癌MCF-7裸鼠移植瘤生长。
关键词:    肉桂酰胺      格尔德霉素      HSP90抑制剂      抗肿瘤药物     
Anticancer effect of 17-(6-cinnamamido-hexylamino-)-17-demethoxygeldanamycin:in vitro and in vivo
LI Liang, LIU Hong, ZHANG Sheng-hua, HU Lei, ZHEN Yong-su
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Abstract:
In the present study, a new compound named 17-(6-cinnamamido-hexylamino-)-17-de-methoxygeldanamycin (CDG) was obtained by introducing the cinnamic acid (CA) group into the 17-site of geldanamycin (GDM). The anti-cancer effects of CDG in vitro and in vivo were evaluated. MTT assay was used to examine the inhibitory effect of CDG on the proliferation of MCF-7, HepG2, H460 and SW1990 cells. Immunofluorescent staining flow cytometry combined with Annexin V-FITC/PI staining were used to detect apoptotic cells. Transwell assay was used to analyze the effect of CDG on cell invasion and migration ability. Western blotting was used to detect the expression levels of RAF-1, EGFR, AKT, CDK4 and HER-2 of MCF-7, HepG2 and H460 cells. The toxicities of CDG and GDM were evaluated in mice. Using the subcutaneously transplanted MCF-7 xenograft in nude mice, inhibitory effect was evaluated in vivo. The results showed that CDG inhibited the proliferation of cancer cells (IC50: 13.6-67.4 μg·mL-1). After exposure to CDG for 48 h, most cells presented typical morphologic changes of apoptosis such as chromatin condensation or shrunken nucleus. The rates of apoptosis of MCF-7, HepG2, H460 and SW1990 cells incubated with 10 μg·mL-1 CDG were 23.16%, 27.55%, 22.21%, 20.47%, respectively. A dose-dependent reduction of migration of four cell lines was found after exposure to CDG. The decreased levels of RAF-1, EGFR, AKT, CDK4 and HER-2 showed that CDG possessed HSP90 inhibitory effect. The result of animal toxicity test on the mice suggested that CDG had lower toxicity than GDM. Meanwhile, CDG inhibited the growth of MCF-7 xenografts of athymic mice.
Key words:    cinnamamide    geldanamycin    HSP90 inhibitor    anticancer drug   
收稿日期: 2013-06-01
基金项目: 国家“重大新药创制”科技重大专项资助项目(2010zx09401-407).
通讯作者: 甄永苏
Email: zhenys@public.bta.net.cn
相关功能
PDF(5062KB) Free
打印本文
0
作者相关文章
李良  在本刊中的所有文章
刘红  在本刊中的所有文章
张胜华  在本刊中的所有文章
胡磊  在本刊中的所有文章
甄永苏  在本刊中的所有文章

参考文献:
[1] Amedei A, D'Elios MM. New therapeutic approaches by using microorganism-derived compounds[J]. Curr Med Chem, 2012, 19: 3822-3840.
[2] da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy[J]. Curr Opin Pharmacol, 2001, 1: 364-369.
[3] Jiang XF, Shang BY, Jin LF, et al. Antitumor components from an actinomycete strain 6011W[J]. J Asian Nat Prod Res, 1999, 2: 31-38.
[4] He WQ, Wang YG. Cloning and analysis of geldanamycin partial biosynthetic gene cluster of Streptomyces hygroscopicus 17997[J]. Chin J Biotechnol (生物工程学报), 2006, 22: 902-906.
[5] Jiang X, Zhen Y. Cinnamamide, an antitumor agent with low cytotoxicity acting on matrix metalloproteinase[J]. Anticancer Drugs, 2000, 11: 49-54.
[6] De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents-a review[J]. Curr Med Chem, 2011, 18: 1672-1703.
[7] Whitesell L, Mimnaugh EG, De Costa B, et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation[J]. Proc Natl Acad Sci USA, 1994, 91: 8324-8328.
[8] Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer[J]. Nat Rev Cancer, 2005, 5: 761-772.
[9] Sakagami M, Morrison P, Welch WJ. Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases[J]. Cell Stress Chaperones, 1999, 4: 19-28.
[10] Chiosis G, Timaul MN, Lucas B, et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells[J]. Chem Biol, 2001, 8: 289-299.
[11] Grbovic OM, Basso AD, Sawai A, et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors[J]. Proc Natl Acad Sci USA, 2006, 103: 57-62.
[12] Bonvini P, Gastaldi T, Falini B, et al. Nucleophos-minanaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino, 17-demethoxy­geldanamycin[J]. Cancer Res, 2002, 62: 1559-1566.
[13] Supko JG, Hickman RL, Grever MR, et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent[J]. Cancer Chemother Pharmacol, 1995, 36: 305-315.
[14] Li L, Liu H, Xu XD, et al. A novel derivative of geldanamycin and its antitumor activity[J]. Chin Chem Lett, 2009, 20: 391-392.
[15] Banerji U, O'Donnell A, Scurr M, et al. Phase I pharma­cokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies[J]. J Clin Oncol, 2005, 23: 4152-4161.
[16] Bagatell R, Gore L, Egorin MJ, et al. Phase I pharma­cokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study[J]. Clin Cancer Res, 2007, 13: 1783-1788.
[17] Kummar S, Gutierrez ME, Gardner EG, et al. Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies[J]. Eur J Cancer, 2010, 46: 340-347.
[18] Richardson PG, Chanan-Khan AA, Alsina M, et al. Tanespimycin monotherapy in relapsed multiple myeloma: results of a phase 1 dose-escalation study[J]. Br J Haematol, 2010, 150: 438-445.
[19] Sawai A, Chandarlapaty S, Greulich H, et al. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel[J]. Cancer Res, 2008, 68: 589-596.
[20] Raja SM, Clubb RJ, Bhattacharyya M, et al. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells[J]. Cancer Biol Ther, 2008, 7: 1630-1640.
[21] Gooljarsingh LT, Fernandes C, Yan K, et al. A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues[J]. Proc Natl Acad Sci USA, 2006, 103: 7625-7630.
[22] Hance MW, Dole K, Gopal U, et al. Secreted Hsp90 is a novel regulator of the epithelial to mesenchymal transition (EMT) in prostate cancer[J]. J Biol Chem, 2012, 287: 37732-37744.
[23] Jhaveri K, Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance[J]. Adv Pharmacol, 2012, 65: 471-517.