药学学报, 2013, 48(12): 1844-1849
引用本文:
沈松, 吴琳, 王成润, 戚雪勇, 戈延茹, 金一. 载多柔比星磁性四氧化三铁的制备及体外评价[J]. 药学学报, 2013, 48(12): 1844-1849.
SHEN Song, WU Lin, WANG Cheng-run, QI Xue-yong, GE Yan-ru, JIN Yi. Preparation and in vitro evaluation of doxorubicin-loaded magnetic iron oxide nanoparticles[J]. Acta Pharmaceutica Sinica, 2013, 48(12): 1844-1849.

载多柔比星磁性四氧化三铁的制备及体外评价
沈松1,2, 吴琳3, 王成润1, 戚雪勇2, 戈延茹2, 金一1
1. 浙江大学药学院, 浙江 杭州 310058;
2. 江苏大学药学院, 江苏 镇江 212013;
3. 江苏大学附属医院, 江苏 镇江 212001
摘要:
本文采用水热法制备具有良好分散性的聚乙二醇(PEG)修饰的四氧化三铁(Fe3O4-PEG)纳米粒,通过透射电镜(TEM)、热重分析(TGA)等手段对其表征,考察其光热效果及对肿瘤细胞的杀伤作用,同时制备负载多柔比星(DOX)的Fe3O4-PEG纳米粒,研究其细胞毒性及联合治疗效果。结果表明,所制备的纳米粒分布均一,在水中的载药量达21%,体外释放具有pH敏感性。细胞毒性实验(MTT)结果显示,空白纳米粒具有较好的生物相容性,载药纳米粒具有较强的细胞毒性。联合治疗效果显示,光热治疗(PTT)可显著提高DOX的细胞杀伤作用。该研究表明,Fe3O4-PEG具有良好的光热效果及载药能力,可同时应用于肿瘤的光热及药物治疗,而这两种疗法具有潜在联合应用前景。
关键词:    光热治疗      磁性四氧化三铁纳米粒      联合治疗      pH敏感释放     
Preparation and in vitro evaluation of doxorubicin-loaded magnetic iron oxide nanoparticles
SHEN Song1,2, WU Lin3, WANG Cheng-run1, QI Xue-yong2, GE Yan-ru2, JIN Yi1
1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
2. College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang 212013, China;
3. Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
Abstract:
PEG-modified magnetic Fe3O4 (Fe3O4-PEG) nanoparticles were sythesized using a solvothermal reaction and characterized with transmission electron microscopy (TEM) and thermo gravimetric analysis (TGA). The photothermal effect and photothermal destruction of cancer cells were evaluated. Then the doxorubicin loaded Fe3O4-PEG (DOX-Fe3O4-PEG) nanoparticles were prepared. The cytotoxicity and combined chemotherapy/photothermal therapy (PTT) effect were investigated. Uniform PEG coated Fe3O4 nanoparticles with particle size of 155 nm were obtained in the experiment. The loading and release of doxorubicin on Fe3O4-PEG were pH-dependent. The drug loading capacity in water was 21%. The results of MTT indicated a good biocompatiblity of Fe3O4-PEG nanoparticles and high cytotoxicity of DOX-Fe3O4-PEG. In combined therapy experiment, photothermal therapy demonstrated unambiguously enhanced chemotherapy efficacy. In conclusion, the obtained Fe3O4-PEG nanoparticles which exhibit good photothermal effect and drug loading capacity can be used for chemotherapy and photothermal therapy. The synergetic anti-tumor activity indicates the potential for the combined application of chemotherapy and photothermal therapy in cancer treatment.
Key words:    photothermal therapy    magnetic iron oxide nanoparticle    combined therapy    pH-sensitive release   
收稿日期: 2013-09-09
基金项目: 国家自然科学基金资助项目(81172999).
通讯作者: 戈延茹, 金一
Email: geyanru@ujs.edu.cn;jinyizju@hotmail.com
相关功能
PDF(4733KB) Free
打印本文
0
作者相关文章
沈松  在本刊中的所有文章
吴琳  在本刊中的所有文章
王成润  在本刊中的所有文章
戚雪勇  在本刊中的所有文章
戈延茹  在本刊中的所有文章
金一  在本刊中的所有文章

参考文献:
[1] Mikhaylov G, Mikac U, Magaeva AA, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment[J]. Nat Nanotechnol, 2011, 6: 594-602.
[2] Gultepe E, Reynoso FJ, Jhaveri A, et al. Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution[J]. Nanomedicine, 2010, 5: 1173-1182.
[3] Zhao B, Fan YC, Wang XQ, et al. Cellular toxicity and anti-tumor efficacy of iRGD modified doxorubixin loaded sterically stabilized liposomes[J]. Acta Pharm Sin (药学学报), 2013, 48: 417-422.
[4] Wang L, Yang CQ, Wang J. Assemble of magnetic nanoparticles into the structure of cisplatin liposome[J]. Acta Pharm Sin (药学学报), 2011, 46: 592-598.
[5] Zhou J, Zhang J, David AE, et al. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles[J]. Nanotechnology, 2013, 24: 375102.
[6] Shen JM, Gao FY, Yin T, et al. cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy[J]. Pharmacol Res, 2013, 70: 102-115.
[7] Pouponneau P, Leroux JC, Martel S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization[J]. Biomaterials, 2009, 30: 6327-6332.
[8] Gou GJ, Liu YH, Sun Y, et al. Supra-molecular assembly and magnetic targeted slow-release effect of “dextran-magnetic layered double hydroxide-fluorouracil” drug delivery system[J]. Acta Pharm Sin (药学学报), 2011, 46: 1390-1398.
[9] Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angew Chem Int Edit, 2011, 50: 7385-7390.
[10] Peng XH, Qian X, Mao H, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy[J]. Int J Nanomed, 2008, 3: 311-321.
[11] Gao WH, Liu ST, Fan CX, et al. Pharmacokinetics, tissue distribution and magnetic resonance's response characterstics of folic acid-O-carboxymethyl chitosan ultrasmall superparamagnetic iron oxide nanoparticles in mice and rats[J]. Acta Pharm Sin (药学学报), 2011, 46: 845-851.
[12] Shen S, Kong F, Guo X, et al. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation[J]. Nanoscale, 2013, 5: 8056-8066.
[13] Chu M, Shao Y, Peng J, et al. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles[J]. Biomaterials, 2013, 34: 4078-4088.
[14] Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes[J]. Acs Nano, 2009, 3: 3707-3713.
[15] You J, Zhang GD, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. Acs Nano, 2010, 4: 1033-1041.
[16] Bibby DC, Talmadge JE, Dalal MK, et al. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice[J]. Int J Pharm, 2005, 293: 281-290.
[17] You J, Zhang R, Xiong C, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors[J]. Cancer Res, 2012, 72: 4777-4786.
[18] Liu Z, Sun XM, Nakayama-Ratchford N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery[J]. Acs Nano, 2007, 1: 50-56.
[19] Fernandez CT, de Pablo CS, Serrano AM, et al. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods[J]. Int J Nanomed, 2012, 7: 1511-1523.